1
|
Feldman AG, Levin MF, Garofolini A, Piscitelli D, Zhang L. Central pattern generator and human locomotion in the context of referent control of motor actions. Clin Neurophysiol 2021; 132:2870-2889. [PMID: 34628342 DOI: 10.1016/j.clinph.2021.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Unperturbed human locomotion presumably results from feedforward shifts in stable body equilibrium in the environment, thus avoiding falling and subsequent catching considered in alternative theories of locomotion. Such shifts are achieved by relocation of the referent body configuration at which multiple muscle recruitment begins. Rather than being directly specified by a central pattern generator, multiple muscles are activated depending on the extent to which the body is deflected from the referent, threshold body configuration, as confirmed in previous studies. Based on the referent control theory of action and perception, solutions to classical problems in motor control are offered, including the previously unresolved problem of the integration of central and reflex influences on motoneurons and the problem of how posture and movement are related. The speed of locomotion depends on the rate of shifts in the referent body configuration. The transition from walking to running results from increasing the rate of referent shifts. It is emphasised that there is a certain hierarchy between reciprocal and co-activation of agonist and antagonist muscles during locomotion and other motor actions, which is also essential for the understanding of how locomotor speed is regulated. The analysis opens a new avenue in neurophysiological approaches to human locomotion with clinical implications.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada.
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y5, Canada
| | - Alessandro Garofolini
- Institute for Health and Sport (IHES), Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia
| | - Daniele Piscitelli
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y5, Canada
| | - Lei Zhang
- Institut für Neuroinformatik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
2
|
Huang Y, Jiao J, Hu J, Hsing C, Lai Z, Yang Y, Hu X. Measurement of sensory deficiency in fine touch after stroke during textile fabric stimulation by electroencephalography (EEG). J Neural Eng 2020; 17:045007. [PMID: 32613946 DOI: 10.1088/1741-2552/aba160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective Sensory deficiency of fine touch limits the restoration of motor functions after stroke, and its evaluation was seldom investigated from a neurological perspective. In this study, we investigated the cortical response measured by electroencephalography (EEG) on the fine touch sensory impairment during textile fabric stimulation after stroke. Approach Both participants with chronic stroke (n = 12, stroke group) and those unimpaired (n = 15, control group) were recruited. To investigate fine touch during textile fabric stimulations, full brain EEG recordings (64-channel) were used, as well as the touch sensation questionnaires based on the American Association of Textile Chemists and Colorists (AATCC) Evaluation Procedure 5. During the EEG measurement, relative spectral power (RSP) and EEG topography were used to evaluate the neural responses toward the fabric stimuli. In the subjective questionnaire, the fine touch for fabric stimuli was rated and represented by 13 different sensation parameters. The correlation between the fine touch evaluated by the EEG and the questionnaire was also investigated. Main results The neural responses of individuals with fine touch impairments after stroke were characterized by a shifted power spectrum to a higher frequency band, enlarged sensory cortical areas and higher RSP intensity (P < 0.05). Asymmetric neural responses were obtained when stimulating different upper limbs for both unimpaired participants and stroke participants (P < 0.05). The fine touch sensation of the stroke participants was impaired even in the unaffected limb. However, as a result of different neural processes, the correlation between the EEG and the questionnaire was weak (r < 0.2). Significance EEG RSP was able to capture the varied cortical responses induced by textile fabric fine touch stimulations related to the fine touch sensory impairment after stroke.
Collapse
Affiliation(s)
- Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
3
|
Cuadra C, Falaki A, Sainburg R, Sarlegna FR, Latash ML. Case Studies in Neuroscience: The central and somatosensory contributions to finger interdependence and coordination: lessons from a study of a "deafferented person". J Neurophysiol 2019; 121:2083-2087. [PMID: 30969884 DOI: 10.1152/jn.00153.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested finger force interdependence and multifinger force-stabilizing synergies in a patient with large-fiber peripheral neuropathy ("deafferented person"). The subject performed a range of tasks involving accurate force production with one finger and with four fingers. In one-finger tasks, nontask fingers showed unintentional force production (enslaving) with an atypical pattern: very large indices for the lateral (index and little) fingers and relatively small indices for the central (middle and ring) fingers. Indices of multifinger synergies stabilizing total force and of anticipatory synergy adjustments in preparation to quick force pulses were similar to those in age-matched control females. During constant force production, removing visual feedback led to a slow force drift to lower values (by ~25% over 15 s). The results support the idea of a neural origin of enslaving and suggest that the patterns observed in the deafferented person were reorganized based on everyday manipulation tasks. The lack of significant changes in the synergy index shows that synergic control can be organized in the absence of somatosensory feedback. We discuss the control of the hand in deafferented persons within the α-model of the equilibrium-point hypothesis and suggest that force drift results from an unintentional drift of the control variables to muscles toward zero values. NEW & NOTEWORTHY We demonstrate atypical patterns of finger enslaving and unchanged force-stabilizing synergies in a person with large-fiber peripheral neuropathy. The results speak strongly in favor of central origin of enslaving and its reorganization based on everyday manipulation tasks. The data show that synergic control can be implemented in the absence of somatosensory feedback. We discuss the control of the hand in deafferented persons within the α-model of the equilibrium-point hypothesis.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania.,Escuela Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello , Viña del Mar , Chile
| | - Ali Falaki
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania.,Département de Neurosciences, Faculté de Médecine, Université de Montréal , Montréal, Québec , Canada
| | - Robert Sainburg
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| | | | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
4
|
Chen X, Liu F, Yan Z, Cheng S, Liu X, Li H, Li Z. Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Medicine (Baltimore) 2018; 97:e13387. [PMID: 30508935 PMCID: PMC6283184 DOI: 10.1097/md.0000000000013387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Motor dysfunction is a common and severe complication of stroke that affects the quality of life of these patients. Currently, motor function rehabilitation predominantly focuses on active movement training; nevertheless, the role of sensory input is usually overlooked. Sensory input is very important to motor function. Voluntary functional movement necessitates preparation, execution, and monitoring functions of the central nervous system, while the monitoring needs the participation of the sensory system. Sensory signals affect motor functions by inputting external environment information and intrinsic physiological status as well as by guiding initiation of the motor system. Recent studies focusing on sensory input-based rehabilitation training for post-stroke dyskinesia have demonstrated that sensory function has significant effects on voluntary functional movements. In conclusion, sensory input plays a crucial role in motor function rehabilitation, and the combined sensorimotor training modality is more effective than conventional motor-oriented approaches.
Collapse
|
5
|
Tseng SC, Cole KR, Shaffer MA, Petrie MA, Yen CL, Shields RK. Speed, resistance, and unexpected accelerations modulate feed forward and feedback control during a novel weight bearing task. Gait Posture 2017; 52:345-353. [PMID: 28043056 PMCID: PMC5337176 DOI: 10.1016/j.gaitpost.2016.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
We developed a method to investigate feed-forward and feedback movement control during a weight bearing visuomotor knee tracking task. We hypothesized that a systematic increase in speed and resistance would show a linear decrease in movement accuracy, while unexpected perturbations would induce a velocity-dependent decrease in movement accuracy. We determined the effects of manipulating the speed, resistance, and unexpected events on error during a functional weight bearing task. Our long term objective is to benchmark neuromuscular control performance across various groups based on age, injury, disease, rehabilitation status, and/or training. Twenty-six healthy adults between the ages of 19-45 participated in this study. The study involved a single session using a custom designed apparatus to perform a single limb weight bearing task under nine testing conditions: three movement speeds (0.2, 0.4, and 0.6Hz) in combination with three levels of brake resistance (5%, 10%, and 15% of individual's body weight). Individuals were to perform the task according to a target with a fixed trajectory across all speeds, corresponding to a∼0 (extension) to 30° (flexion) of knee motion. An increase in error occurred with speed (p<0.0001, effect size (eta2): η2=0.50) and resistance (p<0.0001, η2=0.01). Likewise, during unexpected perturbations, the ratio of perturbed/non-perturbed error increased with each increment in velocity (p<0.0014, η2=0.08), and resistance (p<0.0001, η2=0.11). The hierarchical framework of these measurements offers a standardized functional weight bearing strategy to assess impaired neuro-muscular control and/or test the efficacy of therapeutic rehabilitation interventions designed to influence neuromuscular control of the knee.
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Keith R Cole
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Michael A Shaffer
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Michael A Petrie
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Chu-Ling Yen
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Richard K Shields
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States.
| |
Collapse
|
6
|
Rodrigues MRM, Slimovitch M, Chilingaryan G, Levin MF. Does the Finger-to-Nose Test measure upper limb coordination in chronic stroke? J Neuroeng Rehabil 2017; 14:6. [PMID: 28114996 PMCID: PMC5259887 DOI: 10.1186/s12984-016-0213-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aimed to kinematically validate that the time to perform the Finger-to-Nose Test (FNT) assesses coordination by determining its construct, convergent and discriminant validity. METHODS Experimental, criterion standard study. Both clinical and experimental evaluations were done at a research facility in a rehabilitation hospital. Forty individuals (20 individuals with chronic stroke and 20 healthy, age- and gender-matched individuals) participated.. Both groups performed two blocks of 10 to-and-fro pointing movements (non-dominant/affected arm) between a sagittal target and the nose (ReachIn, ReachOut) at a self-paced speed. Time to perform the test was the main outcome. Kinematics (Optotrak, 100Hz) and clinical impairment/activity levels were evaluated. Spatiotemporal coordination was assessed with slope (IJC) and cross-correlation (LAG) between elbow and shoulder movements. RESULTS Compared to controls, individuals with stroke (Fugl-Meyer Assessment, FMA-UE: 51.9 ± 13.2; Box & Blocks, BBT: 72.1 ± 26.9%) made more curved endpoint trajectories using less shoulder horizontal-abduction. For construct validity, shoulder range (β = 0.127), LAG (β = 0.855) and IJC (β = -0.191) explained 82% of FNT-time variance for ReachIn and LAG (β = 0.971) explained 94% for ReachOut in patients with stroke. In contrast, only LAG explained 62% (β = 0.790) and 79% (β = 0.889) of variance for ReachIn and ReachOut respectively in controls. For convergent validity, FNT-time correlated with FMA-UE (r = -0.67, p < 0.01), FMA-Arm (r = -0.60, p = 0.005), biceps spasticity (r = 0.39, p < 0.05) and BBT (r = -0.56, p < 0.01). A cut-off time of 10.6 s discriminated between mild and moderate-to-severe impairment (discriminant validity). Each additional second represented 42% odds increase of greater impairment. CONCLUSIONS For this version of the FNT, the time to perform the test showed construct, convergent and discriminant validity to measure UL coordination in stroke.
Collapse
Affiliation(s)
- Marcos R. M. Rodrigues
- School of Physical and Occupational Therapy, McGill University, 3654 Prom Sir-William-Osler, Montréal, QC H3G 1Y5 Canada
- Feil and Oberfeld Research Center, Jewish Rehabilitation Hospital, site of Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
| | | | - Gevorg Chilingaryan
- School of Physical and Occupational Therapy, McGill University, 3654 Prom Sir-William-Osler, Montréal, QC H3G 1Y5 Canada
- Feil and Oberfeld Research Center, Jewish Rehabilitation Hospital, site of Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
| | - Mindy F. Levin
- School of Physical and Occupational Therapy, McGill University, 3654 Prom Sir-William-Osler, Montréal, QC H3G 1Y5 Canada
- Feil and Oberfeld Research Center, Jewish Rehabilitation Hospital, site of Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
| |
Collapse
|
7
|
Feldman AG. Active sensing without efference copy: referent control of perception. J Neurophysiol 2016; 116:960-76. [PMID: 27306668 PMCID: PMC5009211 DOI: 10.1152/jn.00016.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
Although action and perception are different behaviors, they are likely to be interrelated, as implied by the notions of perception-action coupling and active sensing. Traditionally, it has been assumed that the nervous system directly preprograms motor commands required for actions and uses a copy of them called efference copy (EC) to also influence our senses. This review offers a critical analysis of the EC concept by identifying its limitations. An alternative to the EC concept is based on the experimentally confirmed notion that sensory signals from receptors are perceived relative to referent signals specified by the brain. These referents also underlie the control of motor actions by predetermining where, in the spatial domain, muscles can work without preprogramming how they should work in terms of motor commands or EC. This approach helps solve several problems of action and explain several sensory experiences, including position sense and the sense that the world remains stationary despite changes in its retinal image during eye or body motion (visual space constancy). The phantom limb phenomenon and other kinesthetic illusions are also explained within this framework.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience and Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada; and Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|
8
|
WAGNER HEIKO, GIESL PETER, BLICKHAN REINHARD. MUSCULOSKELETAL STABILIZATION OF THE ELBOW — COMPLEX OR REAL. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519407002340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Both sensory information and mechanical properties of the musculoskeletal system are necessary for fast and appropriate reactions of humans and animals to environmental perturbations. In this paper, we focus on the musculoskeletal system and study the stability of a human elbow in an equilibrium state. We derive a biomechanical model of the human elbow, including an antagonistic pair of muscles, and investigate the stability analytically based on the theory of Ljapunov. Depending on the elbow angle and the level of coactivation, we obtain the following three qualitatively different behaviors: unstable, stable with real eigenvalues, and stable with complex eigenvalues. If the eigenvalues are real, then the system is critically damped; for complex eigenvalues, solutions near the equilibrium are oscillating. Based on experimental data, we found that in principle real and complex behaviors may occur in human arm movements. The experiments support the analytical predictions. Furthermore, in agreement with the simulations, we found differences in the experimental results among the subjects. The results of this study support the assumption that arm movements around an equilibrium point may be self-stabilized without sensory feedback or motor control, based only on mechanical properties of musculoskeletal systems.
Collapse
Affiliation(s)
- HEIKO WAGNER
- Biomechanics and Motor Control, University of Münster, Horstmarer Landweg 62b, 48149 Münster, Germany
| | - PETER GIESL
- Department of Mathematics, Mantell Building, University of Sussex, Falmer, Brighton, BN1 9RF, UK
| | - REINHARD BLICKHAN
- Biomechanics Group, Institute of Sport Science, Friedrich-Schiller-University Jena, Seidelstr. 20, D-07749 Jena, Germany
| |
Collapse
|
9
|
New insights into action–perception coupling. Exp Brain Res 2008; 194:39-58. [PMID: 19082821 DOI: 10.1007/s00221-008-1667-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
10
|
Raptis HA, Dannenbaum E, Paquet N, Feldman AG. Vestibular system may provide equivalent motor actions regardless of the number of body segments involved in the task. J Neurophysiol 2007; 97:4069-78. [PMID: 17428903 DOI: 10.1152/jn.00909.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vestibulospinal system likely plays an essential role in motor equivalence--the ability to reach the desired motor goal despite intentional or imposed changes in the number of body segments involved in the task. To test this hypothesis, we compared the ability of healthy subjects and patients with unilateral vestibular lesions (surgical acoustic neuroma resection 0.6 to 6.7 yr before the study) to maintain either the same hand position or the same trajectory of within arm reach movements while flexing the trunk, in the absence of vision. In randomly selected trials, the trunk motion was prevented by an electromagnetic device. Healthy subjects were able to preserve the hand position or trajectory by modifying the elbow and shoulder joint rotations in a condition-dependent way, at a minimal latency of about 60 ms after the trunk movement onset. In contrast, six of seven patients showed deficits in the compensatory angular modifications at least in one of two tasks so that 30-100% of the trunk displacement was not compensated and thus influenced the hand position or trajectory. Results suggest that vestibular influences evoked by the head motion during trunk flexion play a major role in maintaining the consistency of arm motor actions in external space despite changes in the number of body segments involved. Our findings also suggest that despite long-term plasticity in the vestibular system and related neural structures, unilateral vestibular lesion may reduce the capacity of the nervous system to achieve motor equivalence.
Collapse
Affiliation(s)
- H A Raptis
- Neurological Science Research Center, Department of Physiology, University of Montreal and Center for Multidisciplinary Research in Rehabilitation (CRIR), Rehabilitation Institute of Montreal, Montreal., Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Foisy M, Feldman AG. Threshold control of arm posture and movement adaptation to load. Exp Brain Res 2006; 175:726-44. [PMID: 16847611 DOI: 10.1007/s00221-006-0591-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Accepted: 06/09/2006] [Indexed: 11/26/2022]
Abstract
We addressed the fundamental questions of which variables underlie the control of arm movement and how they are stored in motor memory, reproduced and modified in the process of adaptation to changing load conditions. Such variables are defined differently in two major theories of motor control (internal models and threshold control). To resolve the controversy, these theories were tested (experiment 1) based on their ability to explain why active movement away from a stable posture is not opposed by stabilizing mechanisms (the posture-movement problem). The internal model theory suggests that the system counteracts the opposing forces by increasing the muscle activity in proportion to the distance from the initial posture (position-dependent EMG control). In contrast, threshold control fully excludes these opposing forces by shifting muscle activation thresholds and thus resetting the stabilizing mechanisms to a new posture. Subjects were sitting, holding the vertical handle of a double-joint manipulandum with their right hand and were facing a computer screen on which the handle and target to be reached were displayed. In response to an auditory signal, subjects quickly moved the handle from an initial position to one of two (frontal and sagittal) targets. No load was applied during the movement but in separate trials, a brief perturbation was applied to the handle by torque motors controlling the manipulandum. Perturbations were applied prior to or 3 s after movement offset, in the latter case in one of eight directions. The EMG activity of the majority of the seven recorded muscles was at zero level before movement onset and returned to zero level after movement offset. Those muscles that remained active before or after the movement could be made silent whereas previously silent muscles could be activated after a small passive displacement (several millimeters) elicited by perturbations in appropriate directions. Results showed that the activation thresholds of motoneurons of arm muscles were reset from the initial to a final position and that EMG activity was not position-dependent. These results were inconsistent with the internal model theory but confirmed the threshold control theory. Then the ability of threshold control theory to explain rapid movement adaptation to a position-dependent load was investigated (experiment 2 and 3). Subjects produced fast movement to the frontal target with and without a position-dependent load applied to the handle. Trials were organized in blocks alternating between the load and no-load condition (20 blocks in total, with randomly chosen number of five to ten trials in each). Subjects were instructed "do not correct" in experiment 2 and "correct" movement errors during the trial in experiment 3. Five threshold arm configurations underlying the movement production and adaptation were identified. When instructed "do not correct", movement precision was fully restored on average after two trials. No significant improvement was observed as the experiment progressed despite the fact that the same load condition was repeated after one block of trials. Thus, in each block, the adaptation was made anew, implying that subjects relied on short-term memory and could not recall the threshold arm configurations they specified to accurately reach the same target in the same load condition in previous blocks. When instructed to "correct" within each trial, precision was restored faster, on average after one trial. Major aspects of the production and adaptation of arm movement (including the kinematics, movement errors, instruction-dependent behavior, and absence of position-related EMG activity) are explained in terms of threshold control.
Collapse
Affiliation(s)
- Martin Foisy
- Neurological Science Research Center, Department of Physiology, Rehabilitation Institute of Montreal, University of Montreal and Center for Interdisciplinary Research Studies in Rehabilitation CRIR, 6300 Darlington Ave, Montreal, QC, Canada
| | | |
Collapse
|
12
|
Mihaltchev P, Archambault PS, Feldman AG, Levin MF. Control of double-joint arm posture in adults with unilateral brain damage. Exp Brain Res 2005; 163:468-86. [PMID: 15690154 DOI: 10.1007/s00221-004-2202-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 11/06/2004] [Indexed: 10/25/2022]
Abstract
It has been suggested that multijoint movements result from the specification of a referent configuration of the body. The activity of muscles and forces required for movements emerge depending on the difference between the actual and referent body configurations. We identified the referent arm configurations specified by the nervous system to bring the arm to the target position both in healthy individuals and in those with arm motor paresis due to stroke. From an initial position of the right arm, subjects matched a force equivalent to 30% of their maximal voluntary force in that position. The external force, produced at the handle of a double-joint manipulandum by two torque motors, pulled the hand to the left (165 degrees ) or pushed it to the right (0 degrees ). For both the initial conditions, three directions of the final force (0 degrees , +20 degrees , and -20 degrees ) with respect to the direction of the initial force were used. Subjects were instructed not to intervene when the load was unexpectedly partially or completely removed. Both groups of subjects produced similar responses to unloading of the double-joint arm system. Partial removal of the load resulted in distinct final hand positions associated with unique shoulder-elbow configurations and joint torques. The net static torque at each joint before and after unloading was represented as a function of the two joint angles describing a planar surface or invariant characteristic in 3D torque/angle coordinates. For each initial condition, the referent arm configuration was identified as the combination of elbow and shoulder angles at which the net torques at the two joints were zero. These configurations were different for different initial conditions. The identification of the referent configuration was possible for all healthy participants and for most individuals with hemiparesis suggesting that they preserved the ability to adapt their central commands-the referent arm configurations-to accommodate changes in external load conditions. Despite the preservation of the basic response patterns, individuals with stroke damage had a more restricted range of hand trajectories following unloading, an increased instability around the final endpoint position, altered patterns of elbow and shoulder muscle coactivation, and differences in the dispersion of referent configurations in elbow-shoulder joint space compared to healthy individuals. Moreover, 4 out of 12 individuals with hemiparesis were unable to specify referent configurations of the arm in a consistent way. It is suggested that problems in the specification of the referent configuration may be responsible for the inability of some individuals with stroke to produce coordinated multijoint movements. The present work adds three findings to the motor control literature concerning stroke: non-significant torque/angle relationships in some subjects, narrower range of referent arm configurations, and instability about the final position. This is the first demonstration of the feasibility of the concept of the referent configuration for the double-joint muscle-reflex system and the ability of some individuals with stroke to produce task-specific adjustments of this configuration.
Collapse
Affiliation(s)
- P Mihaltchev
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation de Montréal, 6300 Darlington, Montreal, Quebec H3S 2J4, Canada
| | | | | | | |
Collapse
|
13
|
|
14
|
Tunik E, Poizner H, Levin MF, Adamovich SV, Messier J, Lamarre Y, Feldman AG. Arm-trunk coordination in the absence of proprioception. Exp Brain Res 2003; 153:343-55. [PMID: 14504854 DOI: 10.1007/s00221-003-1576-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2003] [Accepted: 06/05/2003] [Indexed: 10/26/2022]
Abstract
During trunk-assisted reaching to targets placed within arm's length, the influence of trunk motion on the hand trajectory is compensated for by changes in the arm configuration. The role of proprioception in this compensation was investigated by analyzing the movements of 2 deafferented and 12 healthy subjects. Subjects reached to remembered targets (placed approximately 80 degrees ipsilateral or approximately 45 degrees contralateral to the sagittal midline) with an active forward movement of the trunk produced by hip flexion. In 40% of randomly selected trials, trunk motion was mechanically blocked. No visual feedback was provided during the experiment. The hand trajectory and velocity profiles of healthy subjects remained invariant whether or not the trunk was blocked. The invariance was achieved by changes in arm interjoint coordination that, for reaches toward the ipsilateral target, started as early as 50 ms after the perturbation. Both deafferented subjects exhibited considerable, though incomplete, compensation for the effects of the perturbation. Compensation was more successful for reaches to the ipsilateral target. Both deafferented subjects showed invariance between conditions (unobstructed or blocked trunk motion) in their hand paths to the ipsilateral target, and one did to the contralateral target. For the other deafferented subject, hand paths in the two types of trials began to deviate after about 50% into the movement, because of excessive elbow extension. In movements to the ipsilateral target, when deafferented subjects compensated successfully, the changes in arm joint angles were initiated as early as 50 ms after the trunk perturbation, similar to healthy subjects. Although the deafferented subjects showed less than ideal compensatory control, they compensated to a remarkably large extent given their complete loss of proprioception. The presence of partial compensation in the absence of vision and proprioception points to the likelihood that not only proprioception but also vestibulospinal pathways help mediate this compensation.
Collapse
Affiliation(s)
- E Tunik
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ghafouri M, Archambault PS, Adamovich SV, Feldman AG. Pointing movements may be produced in different frames of reference depending on the task demand. Brain Res 2002; 929:117-28. [PMID: 11852038 DOI: 10.1016/s0006-8993(01)03332-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Movements are likely guided by the nervous system in task-specific spatial frames of reference (FRs). We tested this hypothesis by analyzing fast arm pointing movements involving the trunk made to targets located within the reach of the arm. In the first experiment, subjects pointed to a motionless target and, in the second experiment, to a target moving synchronously with the trunk. Vision of the arm and targets was prevented before movement onset. Each experiment started after three to five training trials. In randomly selected trials of both experiments, an electromagnet device unexpectedly prevented the trunk motion. When the trunk was arrested, the hand trajectory and velocity profile remained invariant in an FR associated with the experimental room in the first or in an FR moving with the trunk in the second experiment. Substantial changes in the arm interjoint coordination in response to the trunk arrest were observed in the first but not in the second experiment. The results demonstrate the ability of the nervous system to rapidly adapt behavior at the joint level to transform motor performance from a spatial FR associated with the environment to one associated with the body. A theoretical framework is suggested in which FRs are considered as pre-existing neurophysiological structures permitting switching between different FRs and guiding multiple joints and muscles without redundancy problems.
Collapse
Affiliation(s)
- Mohammad Ghafouri
- Neurological Science Research Centre, Department of Physiology, University of Montreal and Research Centre, Rehabilitation Institute of Montreal, Montreal, Quebec, Canada H3S 2J4
| | | | | | | |
Collapse
|
16
|
Rossi E, Mitnitski A, Feldman AG. Sequential control signals determine arm and trunk contributions to hand transport during reaching in humans. J Physiol 2002; 538:659-71. [PMID: 11790827 PMCID: PMC2290074 DOI: 10.1113/jphysiol.2001.012809] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2001] [Accepted: 10/11/2001] [Indexed: 11/08/2022] Open
Abstract
When reaching towards objects placed outside the arm workspace, the trunk assumes an active role in transport of the hand by contributing to the extent of movement while simultaneously maintaining the direction of reach. We investigated the spatial-temporal aspects of the integration of the trunk motion into reaching. Specifically, we tested the hypothesis that the efficiency ('gain') of the arm-trunk co-ordination determining the contribution of the trunk to the extent of hand movement may vary substantially with the phase of reaching. Sitting subjects made fast pointing movements towards ipsi- and a contralateral targets placed beyond the reach of the right arm so that a forward trunk motion was required to assist in transporting the hand to the target. Sight of the arm and target was blocked before the movement onset. In randomly selected trials, the trunk motion was unexpectedly prevented by an electromagnet. Subjects were instructed to make stereotypical movements whether or not the trunk was arrested. In non-perturbed trials, most subjects began to move the hand and trunk simultaneously. In trunk-blocked trials, it was impossible for the hand to cover the whole pointing distance but the hand trajectory and velocity profile initially matched those from the trials in which the trunk motion was free, approximately until the hand reached its peak velocity. The arm inter-joint co-ordination substantially changed in response to the trunk arrest at a minimal latency of 40 ms after the perturbation onset. The results suggest that when the trunk was free, the influence of the trunk motion on the hand trajectory and velocity profile was initially neutralized by appropriate changes in the arm joint angles. Only after the hand had reached its peak velocity did the trunk contribute to the extent of pointing. Previous studies suggested that the central commands underlying the transport component of arm movements are completed when the hand reaches peak velocity. These studies, together with the present finding that the trunk only begins to contribute to the hand displacement at peak hand velocity, imply that the central commands that determine the contributions of the arm and the trunk to the transport of the hand are generated sequentially, even though the arm and trunk move in parallel.
Collapse
Affiliation(s)
- Elena Rossi
- Neurological Science Research Center, Department of Physiology, University of Montreal and Research Center, Rehabilitation Institute of Montreal, Montreal, Quebec, Canada H3S 2J4
| | | | | |
Collapse
|