1
|
Torretta E, Corradini A, Pedrotti L, Bani L, Bisi F, Dondina O. Hide-and-Seek in a Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of Resting Sites of Rehabilitated Wolves ( Canis lupus) in Northern Italy. Animals (Basel) 2022; 13:ani13010046. [PMID: 36611657 PMCID: PMC9817923 DOI: 10.3390/ani13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Assessing the behavioural responses of floating wolves to human presence is crucial for investigating the chance of wolf populations expanding into urbanised landscapes. We studied the movement ecology of three rehabilitated wolves in a highly human-dominated landscape (Po Plain, Italy) to explore wolf's plasticity amid widespread human pressure. To reach this aim, we estimated individual 95% utilisation distributions (UD) after the release and inspected both 95% UDs and net squared displacements to identify individual movement patterns; tested for differences in movement patterns during day and night; and analysed the selection of resting sites during dispersal movement in a highly human-altered environment. Both the 95% UDs and step lengths were smaller for wolves settling in suitable areas than for those settling in more urbanised areas. All wolves exhibited strong temporal segregation with humans during all movement phases, particularly while dispersing across highly urbanised areas. Main roads and proximity to built-up areas were shown to limit wolves' dispersal, whereas small-wooded patches that provide shelter during rest facilitated long-distance movements. This study provides important insights into wolf movement and settling in urban and peri-urban areas, providing critical knowledge to promote human-carnivore coexistence.
Collapse
Affiliation(s)
- Elisa Torretta
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Andrea Corradini
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all’Adige, Italy
| | | | - Luciano Bani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesco Bisi
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Insubria University, Via J. H. Dunant, 3-I, 21100 Varese, Italy
| | - Olivia Dondina
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
2
|
Modelling of road-kill hotspots in steppe landscape in Turkey. LANDSCAPE AND ECOLOGICAL ENGINEERING 2022. [DOI: 10.1007/s11355-022-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Versluijs E, Eriksen A, Fuchs B, Wikenros C, Sand H, Wabakken P, Zimmermann B. Wolf Responses to Experimental Human Approaches Using High-Resolution Positioning Data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.792916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Humans pose a major mortality risk to wolves. Hence, similar to how prey respond to predators, wolves can be expected to show anti-predator responses to humans. When exposed to a threat, animals may show a fight, flight, freeze or hide response. The type of response and the circumstances (e.g., distance and speed) at which the animal flees are useful parameters to describe the responses of wild animals to approaching humans. Increasing knowledge about behavioral responses of wolves toward humans might improve appropriate management and decrease conflicts related to fear of wolves. We did a pilot study by conducting 21 approach trials on seven GPS-collared wolves in four territories to investigate their responses to experimental human approaches. We found that wolves predominantly showed a flight response (N = 18), in a few cases the wolf did not flee (N = 3), but no wolves were seen or heard during trials. When wolves were downwind of the observer the flight initiation distance was significantly larger than when upwind, consistent with the hypothesis that conditions facilitating early detection would result in an earlier flight. Our hypothesis that early detection would result in less intense flights was not supported, as we found no correlation between flight initiation distances and speed, distance or straightness of the flight. Wolves in more concealed habitat had a shorter flight initiation distance or did not flee at all, suggesting that perceived risk might have been affected by horizontal visibility. Contrary to our expectation, resettling positions were less concealed (larger horizontal visibility) than the wolves’ initial site. Although our small number of study animals and trials does not allow for generalizations, this pilot study illustrates how standardized human approach trials with high-resolution GPS-data can be used to describe wolf responses at a local scale. In continuation, this method can be applied at larger spatial scales to compare wolf flight responses within and between populations and across anthropogenic gradients, thus increasing the knowledge of wolf behavior toward humans, and potentially improving coexistence with wolves across their range.
Collapse
|
4
|
Hočevar L, Oliveira T, Krofel M. Felid bedrooms with a panoramic view: selection of resting sites by Eurasian lynx (Lynx lynx) in a karstic landscape. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02977-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Mysłajek RW, Olkowska E, Wronka-Tomulewicz M, Nowak S. Mammal use of wildlife crossing structures along a new motorway in an area recently recolonized by wolves. EUR J WILDLIFE RES 2020. [DOI: 10.1007/s10344-020-01412-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractWildlife crossing structures (WCSs) enhance connectivity between habitats of wild animals fragmented by fenced motorways, but factors affecting their use by targeted species remain understudied, particularly in areas recently recolonized by large carnivores. We investigated the use of WCS—6 overpasses (width 30-45m), 5 large underpasses (width 33–114 m) and 4 small underpasses (width 15–19 m)—located along the A4 motorway in the Lower Silesian Forest (western Poland), a large forest tract recently recolonised by wolves (Canis lupus). Identifying and counting tracks of mammals left on sand-beds as well as individuals recorded by camera traps were used to determine species diversity, number and activity patterns of mammals on WCS, and to reveal seasonal and temporal changes of WCS use over 3 years of study (2010–2013). WCSs were mostly used by wild species (51.5%), followed by humans (34.8%), livestock and pets (13.7%). Among wild species, ungulates were the most common (77.4% of crossings), while lagomorphs and carnivores were recorded less often (15% and 7.6% of crossings, respectively). The number of species and crossings of wild mammals, especially wild ungulates and wolves, was substantially higher on overpasses (mean effective number of species (Hill numbers): 0D = 7.8, 1D = 4.1 and 2D = 3.3) than on underpasses (0D = 6.3, 1D = 2.9 and 2D = 2.3) and was not affected by distance between WCS and human settlements or WCS width. There was a higher diversity of wild species and more crossings under large extended bridges than on smaller underpasses. The number of species and number of crossings of wild mammals, domestic animals and people increased from 2010 to 2013. There was a significant difference in activity patterns, with almost all wild species being nocturnal, in contrast to people and dogs. There was no relationship between crossing time and rates of wild carnivores and potential prey. We conclude that overpasses, even with steep entrance slopes (25–26.5%) or integrated with moderately used gravel roads, maintain movement of wild terrestrial mammals much better than underpasses, and the presence of wolves does not hamper the movement of other wild species. As there are significant temporal changes in use of WCS by mammals, we recommend monitoring WCS in all seasons for at least 3 years as a minimum standard for the post-investment assessment of WCS utilization by animals.
Collapse
|
6
|
Landscape Connectivity and Suitable Habitat Analysis for Wolves (Canis lupus L.) in the Eastern Pyrenees. SUSTAINABILITY 2020. [DOI: 10.3390/su12145762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last few decades, much of the mountain area in European countries has turned into potential habitat for species of medium- and large-sized mammals. Some of the occurrences that explain this trend are biodiversity protection, the creation of natural protected areas, and the abandonment of traditional agricultural activities. In recent years, wolves have once again been seen in forests in the eastern sector of the Pyrenees and the Pre-Pyrenees. The success or failure of their permanent settlement will depend on several factors, including conservation measures for the species, habitat availability, and the state of landscape connectivity. The aim of this study is to analyze the state of landscape connectivity for fragments of potential wolf habitat in Catalonia, Andorra, and on the French side of the Eastern Pyrenees. The results show that a third of the area studied constitutes potential wolf habitat and almost 90% of these spaces are of sufficient size to host stable packs. The set of potential wolf habitat fragments was also assessed using the probability of connectivity index (dPC), which analyses landscape connectivity based on graph structures. According to the graph theory, the results confirm that all the nodes or habitat fragments are directly or indirectly interconnected, thus forming a single component. Given the large availability of suitable habitat and the current state of landscape connectivity for the species, the dispersal of the wolf would be favorable if stable packs are formed. A new established population in the Pyrenees could lead to more genetic exchange between the Iberian wolf population and the rest of Europe’s wolf populations.
Collapse
|
7
|
Abstract
AbstractIn wolves Canis lupus, scent marking plays an important role in territory defence. In Europe, studies on patterns of scent marking in wolves have mostly been conducted in mountains or primeval forests, but since these areas are characterised by low human activity, the impact of people on this behaviour has been neglected. We conducted a study that combined genetic methods with an analysis of the spatial distribution of wolf territory markings in lowland managed forests with high human activity. We found that scent markings are deposited by all members of wolf family groups. Wolves most intensively marked crossroads and their vicinity, especially on roads only accessible for four-wheel drive cars. Our study provides further evidence that crossroads of forest roads play a crucial role in wolf scent marking. The results of our study may be useful during inventories of wolf populations based on collecting indirect signs of their presence or non-invasive genetic sampling.
Collapse
|
8
|
Mottram P, Mann GK, Snyman A, O'Riain MJ. Variable Barrier Permeability for a Pack of African Wild Dogs (Lycaon pictus) Reintroduced to Eastern Botswana. AFRICAN JOURNAL OF WILDLIFE RESEARCH 2019. [DOI: 10.3957/056.049.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Phoebe Mottram
- Institute for Communities and Wildlife, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| | - Gareth K.H. Mann
- Institute for Communities and Wildlife, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| | - Andrei Snyman
- Mashatu Research, Northern Tuli Game Reserve, P.O. Box 26, Lentswe Le Moriti, Botswana
| | - M. Justin O'Riain
- Institute for Communities and Wildlife, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| |
Collapse
|
9
|
Sanz-Pérez A, Ordiz A, Sand H, Swenson JE, Wabakken P, Wikenros C, Zimmermann B, Åkesson M, Milleret C. No place like home? A test of the natal habitat-biased dispersal hypothesis in Scandinavian wolves. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181379. [PMID: 30662744 PMCID: PMC6304128 DOI: 10.1098/rsos.181379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Natal dispersal is an important mechanism for the viability of populations. The influence of local conditions or experience gained in the natal habitat could improve fitness if dispersing individuals settle in an area with similar habitat characteristics. This process, defined as 'natal habitat-biased dispersal' (NHBD), has been used to explain distribution patterns in large carnivores, but actual studies evaluating it are rare. We tested whether grey wolf Canis lupus territory establishment was influenced by the habitat characteristics of the natal territory using the long-term monitoring of the Scandinavian wolf population. We paired the locations of natal and established territories, accounted for available habitats along the dispersing route, and compared their habitat characteristics for 271 wolves during 1998-2012. Wolves with the shortest dispersal distances established in natal-like habitat types more than expected by chance, whereas wolves that dispersed longer distances did not show NHBD. The pattern was consistent for male and female wolves, with females showing more NHBD than males. Chances to detect NHBD increased with the size of habitat defined as available. This highlights the importance of considering the biological characteristics of the studied species when defining habitat availability. Our methodological approach can prove useful to inform conservation and management to identify habitats to be selected by reintroduced or naturally expanding populations.
Collapse
Affiliation(s)
- Ana Sanz-Pérez
- Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Evenstad, 2480 Koppang, Norway
| | - Andrés Ordiz
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| | - Håkan Sand
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91 Riddarhyttan, Sweden
| | - Jon E. Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | - Petter Wabakken
- Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Evenstad, 2480 Koppang, Norway
| | - Camilla Wikenros
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91 Riddarhyttan, Sweden
| | - Barbara Zimmermann
- Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Evenstad, 2480 Koppang, Norway
| | - Mikael Åkesson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91 Riddarhyttan, Sweden
| | - Cyril Milleret
- Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Evenstad, 2480 Koppang, Norway
| |
Collapse
|
10
|
Spatial organization in wolves Canis lupus recolonizing north-west Poland: Large territories at low population density. Mamm Biol 2018. [DOI: 10.1016/j.mambio.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Ronnenberg K, Habbe B, Gräber R, Strauß E, Siebert U. Coexistence of wolves and humans in a densely populated region (Lower Saxony, Germany). Basic Appl Ecol 2017. [DOI: 10.1016/j.baae.2017.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Nowak S, Mysłajek RW, Szewczyk M, Tomczak P, Borowik T, Jędrzejewska B. Sedentary but not dispersing wolves Canis lupus
recolonizing western Poland (2001-2016) conform to the predictions of a habitat suitability model. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Robert W. Mysłajek
- Faculty of Biology; Institute of Genetics and Biotechnology; University of Warsaw; Warszawa Poland
| | - Maciej Szewczyk
- Faculty of Biology; Institute of Genetics and Biotechnology; University of Warsaw; Warszawa Poland
| | - Patrycja Tomczak
- Association for Nature “Wolf”; Lipowa Poland
- Faculty of Modern Languages and Literature; Institute of Romance Studies; Adam Mickiewicz University in Poznań; Poznań Poland
| | - Tomasz Borowik
- Mammal Research Institute Polish Academy of Sciences; Białowieża Poland
| | | |
Collapse
|
13
|
Mycobacterium caprae transmission to free-living grey wolves (Canis lupus) in the Bieszczady Mountains in Southern Poland. EUR J WILDLIFE RES 2017. [DOI: 10.1007/s10344-017-1079-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Hindrikson M, Remm J, Pilot M, Godinho R, Stronen AV, Baltrūnaité L, Czarnomska SD, Leonard JA, Randi E, Nowak C, Åkesson M, López-Bao JV, Álvares F, Llaneza L, Echegaray J, Vilà C, Ozolins J, Rungis D, Aspi J, Paule L, Skrbinšek T, Saarma U. Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev Camb Philos Soc 2016; 92:1601-1629. [PMID: 27682639 DOI: 10.1111/brv.12298] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023]
Abstract
The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human-carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the 'pre-genomic era' and the first insights of the 'genomics era'. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650-850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science-based wolf conservation and management at regional and Europe-wide scales.
Collapse
Affiliation(s)
- Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Jaanus Remm
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Malgorzata Pilot
- School of Life Sciences, University of Lincoln, Green Lane, LN6 7DL, Lincoln, UK
| | - Raquel Godinho
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Astrid Vik Stronen
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg Øst, Denmark
| | - Laima Baltrūnaité
- Laboratory of Mammalian Biology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Sylwia D Czarnomska
- Mammal Research Institute Polish Academy of Sciences, Waszkiewicza 1, 17-230, Białowieża, Poland
| | - Jennifer A Leonard
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Ettore Randi
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg Øst, Denmark
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571, Gelnhausen, Germany
| | - Mikael Åkesson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden
| | | | - Francisco Álvares
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Luis Llaneza
- ARENA Asesores en Recursos Naturales S.L. c/Perpetuo Socorro, n° 12 Entlo 2B, 27003, Lugo, Spain
| | - Jorge Echegaray
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Carles Vilà
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Janis Ozolins
- Latvian State Forest Research Institute "Silava", Rigas iela 111, LV-2169, Salaspils, Latvia
| | - Dainis Rungis
- Latvian State Forest Research Institute "Silava", Rigas iela 111, LV-2169, Salaspils, Latvia
| | - Jouni Aspi
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Ladislav Paule
- Department of Phytology, Faculty of Forestry, Technical University, T.G. Masaryk str. 24, SK-96053, Zvolen, Slovakia
| | - Tomaž Skrbinšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000, Ljubljana, Slovenia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
15
|
Crossing the Rhine: a potential barrier to wildcat (Felis silvestris silvestris) movement? CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0874-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Stone OM, Laffan SW, Curnoe D, Herries AI. Potential human impact on the environmental central niche of the chacma baboon. S AFR J SCI 2015. [DOI: 10.17159/sajs.2015/20140279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract We assessed the human impact on regions identified as the environmental central niche for the chacma baboon(Papio ursinus) across southern Africa. This central niche is the area within an animal’s natural range that is most insulated from changes to the environmental variables that influence that animal’s distribution. We used an environmental envelope model constructed with geographic information system software to predict the geographic extent of the central niche. The predicted chacma baboon central niche was 389 000 km2, with substantial overlap with human settlements in several countries. Of note is that although Botswana contains nearly 60 000 km2 of predicted central niche, the International Union for the Conservation of Nature chacma baboon distribution map implies that much of this area is uninhabited by baboons. A regional assessment of the province of KwaZulu-Natal (South Africa) suggests more than 95% of its central niche is uninhabited. Additionally, the very limited and likely disturbed central niche area in Lesotho coupled with the unknown status of chacma baboons within Lesotho warrants further attention. Overall, it appears likely that significant proportions of the predicted central niche in southern Africa are currently uninhabited by the chacma baboon. These uninhabited areas correspond with areas of high human population density and anthropogenic land alteration. The remaining central niche areas that are still inhabited are potentially key areas for conservation and are important for ensuring the sustainability of future populations. However, these areas may be undergoing degradation whilst also becoming more inaccessible to baboons, thus increasing the difficulty of conservation efforts. This preliminary assessment highlights the urgent need for detailed assessments at a finer scale.
Collapse
|
17
|
Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations. EUR J WILDLIFE RES 2015. [DOI: 10.1007/s10344-015-0971-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Nogués S, Cabarga-Varona A. Modelling land use changes for landscape connectivity: The role of plantation forestry and highways. J Nat Conserv 2014. [DOI: 10.1016/j.jnc.2014.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Spatial heterogeneity in human activities favors the persistence of wolves in agroecosystems. PLoS One 2014; 9:e108080. [PMID: 25251567 PMCID: PMC4176725 DOI: 10.1371/journal.pone.0108080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/18/2014] [Indexed: 11/26/2022] Open
Abstract
As human populations expand, there is increasing demand and pressure for land. Under this scenario, behavioural flexibility and adaptation become important processes leading to the persistence of large carnivores in human-dominated landscapes such as agroecosystems. A growing interest has recently emerged on the outcome of the coexistence between wolves and humans in these systems. It has been suggested that spatial heterogeneity in human activities would be a major environmental factor modulating vulnerability and persistence of this contentious species in agroecosystems. Here, we combined information from 35 den sites detected between 2011 and 2012 in agroecosystems of western Iran (Hamedan province), a set of environmental variables measured at landscape and fine spatial scales, and generalized linear models to identify patterns of den site selection by wolves in a highly-modified agroecosystem. On a landscape level, wolves selected a mixture of rangelands with scattered dry-farms on hillsides (showing a low human use) to locate their dens, avoiding areas with high densities of settlements and primary roads. On a fine spatial scale, wolves primarily excavated dens into the sides of elevated steep-slope hills with availability of water bodies in the vicinity of den sites, and wolves were relegated to dig in places with coarse-soil particles. Our results suggest that vulnerability of wolves in human-dominated landscapes could be compensated by the existence of spatial heterogeneity in human activities. Such heterogeneity would favor wolf persistence in agroecosystems favoring a land sharing model of coexistence between wolves and people.
Collapse
|
20
|
Zimmermann B, Nelson L, Wabakken P, Sand H, Liberg O. Behavioral responses of wolves to roads: scale-dependent ambivalence. ACTA ACUST UNITED AC 2014; 25:1353-1364. [PMID: 25419085 PMCID: PMC4235582 DOI: 10.1093/beheco/aru134] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 11/14/2022]
Abstract
Throughout their recent recovery in several industrialized countries, large carnivores have had to cope with a changed landscape dominated by human infrastructure. Population growth depends on the ability of individuals to adapt to these changes by making use of new habitat features and at the same time to avoid increased risks of mortality associated with human infrastructure. We analyzed the summer movements of 19 GPS-collared resident wolves (Canis lupus L.) from 14 territories in Scandinavia in relation to roads. We used resource and step selection functions, including >12000 field-checked GPS-positions and 315 kill sites. Wolves displayed ambivalent responses to roads depending on the spatial scale, road type, time of day, behavioral state, and reproductive status. At the site scale (approximately 0.1 km2), they selected for roads when traveling, nearly doubling their travel speed. Breeding wolves moved the fastest. At the patch scale (10 km2), house density rather than road density was a significant negative predictor of wolf patch selection. At the home range scale (approximately 1000 km2), breeding wolves increased gravel road use with increasing road availability, although at a lower rate than expected. Wolves have adapted to use roads for ease of travel, but at the same time developed a cryptic behavior to avoid human encounters. This behavioral plasticity may have been important in allowing the successful recovery of wolf populations in industrialized countries. However, we emphasize the role of roads as a potential cause of increased human-caused mortality. We studied how wolves in Scandinavia respond to roads built to ease human travel but degrading habitat quality for many wildlife species. Wolves responded with ambivalence: They both selected and avoided roads, all depending on the spatial and temporal scale and their behavioral status. To understand the multi-scale effects of human infrastructure on animal behavior is important with regard to the recent come-back of many wildlife species to now industrialized countries.
Collapse
Affiliation(s)
- Barbara Zimmermann
- Faculty of Applied Ecology and Agricultural Sciences, Hedmark University College, Evenstad , N-2480 Koppang , Norway and
| | - Lindsey Nelson
- Faculty of Applied Ecology and Agricultural Sciences, Hedmark University College, Evenstad , N-2480 Koppang , Norway and
| | - Petter Wabakken
- Faculty of Applied Ecology and Agricultural Sciences, Hedmark University College, Evenstad , N-2480 Koppang , Norway and
| | - Håkan Sand
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Science , SE-73091 Riddarhyttan , Sweden
| | - Olof Liberg
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Science , SE-73091 Riddarhyttan , Sweden
| |
Collapse
|
21
|
Fechter D, Storch I. How many wolves (Canis lupus) fit into Germany? The role of assumptions in predictive rule-based habitat models for habitat generalists. PLoS One 2014; 9:e101798. [PMID: 25029506 PMCID: PMC4100756 DOI: 10.1371/journal.pone.0101798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Due to legislative protection, many species, including large carnivores, are currently recolonizing Europe. To address the impending human-wildlife conflicts in advance, predictive habitat models can be used to determine potentially suitable habitat and areas likely to be recolonized. As field data are often limited, quantitative rule based models or the extrapolation of results from other studies are often the techniques of choice. Using the wolf (Canis lupus) in Germany as a model for habitat generalists, we developed a habitat model based on the location and extent of twelve existing wolf home ranges in Eastern Germany, current knowledge on wolf biology, different habitat modeling techniques and various input data to analyze ten different input parameter sets and address the following questions: (1) How do a priori assumptions and different input data or habitat modeling techniques affect the abundance and distribution of potentially suitable wolf habitat and the number of wolf packs in Germany? (2) In a synthesis across input parameter sets, what areas are predicted to be most suitable? (3) Are existing wolf pack home ranges in Eastern Germany consistent with current knowledge on wolf biology and habitat relationships? Our results indicate that depending on which assumptions on habitat relationships are applied in the model and which modeling techniques are chosen, the amount of potentially suitable habitat estimated varies greatly. Depending on a priori assumptions, Germany could accommodate between 154 and 1769 wolf packs. The locations of the existing wolf pack home ranges in Eastern Germany indicate that wolves are able to adapt to areas densely populated by humans, but are limited to areas with low road densities. Our analysis suggests that predictive habitat maps in general, should be interpreted with caution and illustrates the risk for habitat modelers to concentrate on only one selection of habitat factors or modeling technique.
Collapse
Affiliation(s)
- Dominik Fechter
- Freiburg University, Chair of Wildlife Ecology and Management, Baden-Württemberg, Germany
| | - Ilse Storch
- Freiburg University, Chair of Wildlife Ecology and Management, Baden-Württemberg, Germany
| |
Collapse
|
22
|
Basille M, Van Moorter B, Herfindal I, Martin J, Linnell JDC, Odden J, Andersen R, Gaillard JM. Selecting habitat to survive: the impact of road density on survival in a large carnivore. PLoS One 2013; 8:e65493. [PMID: 23874381 PMCID: PMC3707854 DOI: 10.1371/journal.pone.0065493] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.
Collapse
Affiliation(s)
- Mathieu Basille
- Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, Florida, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Cozzi G, Broekhuis F, McNutt JW, Schmid B. Comparison of the effects of artificial and natural barriers on large African carnivores: implications for interspecific relationships and connectivity. J Anim Ecol 2013; 82:707-15. [PMID: 23402594 DOI: 10.1111/1365-2656.12039] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/22/2012] [Indexed: 11/27/2022]
Abstract
1. Physical barriers contribute to habitat fragmentation, influence species distribution and ranging behaviour, and impact long-term population viability. Barrier permeability varies among species and can potentially impact the competitive balance within animal communities by differentially affecting co-occurring species. The influence of barriers on the spatial distribution of species within whole communities has nonetheless received little attention. 2. During a 4-year period, we studied the influence of a fence and rivers, two landscape features that potentially act as barriers on space use and ranging behaviour of lions Panthera leo, spotted hyenas Crocuta crocuta, African wild dogs Lycaon pictus and cheetahs Acinonyx jubatus in Northern Botswana. We compared the tendencies of these species to cross the barriers using data generated from GPS-radio collars fitted to a total of 35 individuals. Barrier permeability was inferred by calculating the number of times animals crossed a barrier vs. the number of times they did not cross. Finally, based on our results, we produced a map of connectivity for the broader landscape system. 3. Permeability varied significantly between fence and rivers and among species. The fence represented an obstacle for lions (permeability = 7.2%), while it was considerably more permeable for hyenas (35.6%) and wild dogs and cheetahs (≥ 50%). In contrast, the rivers and associated floodplains were relatively permeable to lions (14.4%) while they represented a nearly impassable obstacle for the other species (<2%). 4. The aversion of lions to cross the fence resulted in a relatively lion-free habitat patch on one side of the fence, which might provide a potential refuge for other species. For instance, the competitively inferior wild dogs used this refuge significantly more intensively than the side of the fence with a high presence of lions. 5. We showed that the influence of a barrier on the distribution of animals could potentially result in a broad-scale modification of community structure and ecology within a guild of co-occurring species. As habitat fragmentation increases, understanding the impact of barriers on species distributions is thus essential for the implementation of landscape-scale management strategies, the development and maintenance of corridors and the enhancement of connectivity.
Collapse
Affiliation(s)
- Gabriele Cozzi
- Institute of Evolutionary Biology and Environmental Studies, Zurich University, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland; Botswana Predator Conservation Trust, Private Bag 13, Maun, Botswana
| | | | | | | |
Collapse
|
25
|
Czarnomska SD, Jędrzejewska B, Borowik T, Niedziałkowska M, Stronen AV, Nowak S, Mysłajek RW, Okarma H, Konopiński M, Pilot M, Śmietana W, Caniglia R, Fabbri E, Randi E, Pertoldi C, Jędrzejewski W. Concordant mitochondrial and microsatellite DNA structuring between Polish lowland and Carpathian Mountain wolves. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0446-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
GODINHO RAQUEL, LLANEZA LUIS, BLANCO JUANC, LOPES SUSANA, ÁLVARES FRANCISCO, GARCÍA EMILIOJ, PALACIOS VICENTE, CORTÉS YOLANDA, TALEGÓN JAVIER, FERRAND NUNO. Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula. Mol Ecol 2011; 20:5154-66. [DOI: 10.1111/j.1365-294x.2011.05345.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Presence of Iberian wolf (Canis lupus signatus) in relation to land cover, livestock and human influence in Portugal. Mamm Biol 2011. [DOI: 10.1016/j.mambio.2010.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
LONG ERICS, DIEFENBACH DUANER, WALLINGFORD BRETD, ROSENBERRY CHRISTOPHERS. Influence of Roads, Rivers, and Mountains on Natal Dispersal of White-Tailed Deer. J Wildl Manage 2010. [DOI: 10.1111/j.1937-2817.2010.tb01244.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Colino-Rabanal VJ, Lizana M, Peris SJ. Factors influencing wolf Canis lupus roadkills in Northwest Spain. EUR J WILDLIFE RES 2010. [DOI: 10.1007/s10344-010-0446-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Taylor BD, Goldingay RL. Roads and wildlife: impacts, mitigation and implications for wildlife management in Australia. WILDLIFE RESEARCH 2010. [DOI: 10.1071/wr09171] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Roads can disrupt the population processes of vertebrate wildlife species through habitat fragmentation and vehicle collision. The aims of this review were to synthesise the recent literature on road impacts on wildlife, to identify gaps in our understanding of this topic and to guide future research and management in Australia. We reviewed 244 published studies from the last decade on road and vehicle impacts on wildlife conducted worldwide. A geographic bias was evident among the studies, with 51% conducted in North America, 25% in Europe, 17% in Australia and 7% across several other countries. A taxonomic bias was evident towards mammals (53%), with far fewer studies on birds (10%), amphibians (9%) and reptiles (8%), and some (20%) included multiple taxonomic groups. Although this bias is partly explained by large insurance and medical costs associated with collisions involving large mammals, it is also evident in Australia and signals that large components of biodiversity are being neglected. Despite a prevalence of studies on wildlife road mortality (34%), population impacts are poorly described, although negative impacts are implicated for many species. Barrier effects of roads were examined in 44 studies, with behavioural aversion leading to adverse genetic consequences identified for some species. The installation of road-crossing structures for wildlife has become commonplace worldwide, but has largely outpaced an understanding of any population benefits. Road underpasses appear to be an important generic mitigation tool because a wide range of taxa use them. This knowledge can guide management until further information becomes available. Global concern about the decline of amphibians should lead to a greater focus on road impacts on this group. Priorities for research in Australia include (1) genetic studies on a range of taxa to provide an understanding of life-history traits that predispose species to barrier effects from roads, (2) studies that examine whether crossing structures alleviate population impacts from roads and (3) studies that describe the behavioural response of frogs to crossing structures and that identify factors that may promote the use of suitable structures. A national strategy to mitigate the impacts of roads on wildlife populations is long overdue and must ensure that research on this topic is adequately funded.
Collapse
|
31
|
Blanco JC, Cortés Y. Dispersal patterns, social structure and mortality of wolves living in agricultural habitats in Spain. J Zool (1987) 2007. [DOI: 10.1111/j.1469-7998.2007.00305.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Carmichael LE, Krizan J, Nagy JA, Fuglei E, Dumond M, Johnson D, Veitch A, Berteaux D, Strobeck C. Historical and ecological determinants of genetic structure in arctic canids. Mol Ecol 2007; 16:3466-83. [PMID: 17688546 DOI: 10.1111/j.1365-294x.2007.03381.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.
Collapse
Affiliation(s)
- L E Carmichael
- CW405 Biological Sciences Building, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rodrigues FM, Diniz-Filho JAF. Extinction of canid populations by inbreeding depression under stochastic environments in Southwestern Goiás State: a simulation study. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|