1
|
The rise of ecological parasitology: twelve landmark advances that changed its history. Int J Parasitol 2021; 51:1073-1084. [PMID: 34390744 DOI: 10.1016/j.ijpara.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
In the five decades since the first publication of the International Journal for Parasitology, ecological parasitology has grown from modest beginnings to become a modern discipline with a strong theoretical foundation, a diverse toolkit, and a multidisciplinary approach. In this review, I highlight 12 advances in the field that have spurred its growth over the past 50 years. Where relevant, I identify pivotal contributions that have altered the course of research, as well as the influence of developments in other fields such as mainstream ecology and molecular biology. The 12 key advances discussed are in areas including parasite population dynamics and community assembly, the regulation of host population abundance and food web structure, parasites as agents of natural selection, the impacts of biodiversity and anthropogenic changes on host-parasite interactions, the biogeography of parasite diversity, and the evolutionary genetics of parasites. I conclude by identifying some challenges and opportunities lying ahead, which need to be met for the future growth of ecological research on host-parasite interactions.
Collapse
|
2
|
Schmidt-Rhaesa A, Expósito López De Felipe JE, Martínez J. Primera cita de Gordius albopunctatus Müller, 1927 en la Península Ibérica (Nematomorpha: Gordioida Rauther, 1930). GRAELLSIA 2021. [DOI: 10.3989/graellsia.2021.v77.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Se hace referencia a la primera cita de Gordius albopunctatus Müller, 1927 (Gordioida) de la península ibérica, a partir de un ejemplar macho y otro hembra capturados en la Sierra de Guadarrama (Madrid). Esta cita es la más meridional de su distribución de modo que se amplía notablemente su distribución biogeográfica.
Collapse
|
3
|
Anaya C, Bolek MG. Is there life after parasitism? Survival, longevity, and oogenesis in Acheta domesticus (Orthoptera: Gryllidae) infected with the hairworm, Paragordius varius (Phylum: Nematomorpha). Parasitol Res 2021; 120:2333-2342. [PMID: 33956214 DOI: 10.1007/s00436-021-07173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The costs parasites impose on hosts can lead to reductions in survival and fecundity, but few studies have evaluated the impacts after infection. Hairworms are parasites of terrestrial arthropods that are free-living in aquatic systems as adults. As parasitic juveniles, hairworms acquire nutrients from their definitive hosts, shifting resources away from host development to parasite growth. However, until now, only one study has examined survivorship of naturally infected hosts with hairworms. Using a different hairworm and host system, we conducted experimental infections to examine growth, survivorship, and egg production in virgin female Acheta domesticus infected with the hairworm, Paragordius varius. We found that infected crickets grew significantly less during hairworm development compared to sham-infected control crickets. After releasing their worms, infected crickets survived for 73 ± 32 days but had significantly shorter life spans by an average of 13 days compared to sham-infected control crickets. However, we found that 50% of previously infected crickets produced eggs after releasing their worms. Taken together, these observations suggest that female crickets infected with hairworms may experience less mortality than previous anecdotal evidence suggests. Finally, we discuss the definition of parasitoid and how it relates to nematomorphs, and we suggest that more field and laboratory research is required before suggesting hairworms are parasitoids.
Collapse
Affiliation(s)
- Christina Anaya
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA. .,School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA.
| | - Matthew G Bolek
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
4
|
Benbow ME, Receveur JP, Lamberti GA. Death and Decomposition in Aquatic Ecosystems. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
5
|
Sato T, Iritani R, Sakura M. Host manipulation by parasites as a cryptic driver of energy flow through food webs. CURRENT OPINION IN INSECT SCIENCE 2019; 33:69-76. [PMID: 31358198 DOI: 10.1016/j.cois.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 06/10/2023]
Abstract
Manipulative parasites alter predator-prey interactions, and thus may facilitate, shift or create energy flow pathways through food webs (referred to hereafter as manipulation-mediated energy flow, MMEF). The ecological significance of MMEF would be determined not only by the strength of host manipulation, but also ecological and epidemiological factors, including host biomass, parasite incidence, and trophic position of the host-parasite association in their food webs. While previous theory has predicted that strong manipulation will destabilize host-parasite dynamics, a recently proposed theoretical framework claims that a switching strategy (sequential manipulation from predation suppression to enhancement) should allow parasites to induce strong predation enhancement and thus large MMEF. We formally outline the current and future directions to better understand the causes and consequences of MMEF across biological hierarchies.
Collapse
Affiliation(s)
- Takuya Sato
- Department of Biology, Graduate School of Sciences, Kobe University, Japan.
| | - Ryosuke Iritani
- Biosciences, College of Life and Environmental Science, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
| | - Midori Sakura
- Department of Biology, Graduate School of Sciences, Kobe University, Japan
| |
Collapse
|
6
|
McCauley DJ, Gellner G, Martinez ND, Williams RJ, Sandin SA, Micheli F, Mumby PJ, McCann KS. On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecol Lett 2018; 21:439-454. [PMID: 29316114 DOI: 10.1111/ele.12900] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/18/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Classically, biomass partitioning across trophic levels was thought to add up to a pyramidal distribution. Numerous exceptions have, however, been noted including complete pyramidal inversions. Elevated levels of biomass top-heaviness (i.e. high consumer/resource biomass ratios) have been reported from Arctic tundra communities to Brazilian phytotelmata, and in species assemblages as diverse as those dominated by sharks and ants. We highlight two major pathways for creating top-heaviness, via: (1) endogenous channels that enhance energy transfer across trophic boundaries within a community and (2) exogenous pathways that transfer energy into communities from across spatial and temporal boundaries. Consumer-resource models and allometric trophic network models combined with niche models reveal the nature of core mechanisms for promoting top-heaviness. Outputs from these models suggest that top-heavy communities can be stable, but they also reveal sources of instability. Humans are both increasing and decreasing top-heaviness in nature with ecological consequences. Current and future research on the drivers of top-heaviness can help elucidate fundamental mechanisms that shape the architecture of ecological communities and govern energy flux within and between communities. Questions emerging from the study of top-heaviness also usefully draw attention to the incompleteness and inconsistency by which ecologists often establish definitional boundaries for communities.
Collapse
Affiliation(s)
- Douglas J McCauley
- University of California Santa Barbara, Ecology, Evolution and Marine Biology & Marine Science Institute, Santa Barbara, CA, 93106, USA
| | - Gabriel Gellner
- Colorado State University, Biology, Fort Collins, CO, 80523, USA
| | - Neo D Martinez
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Stuart A Sandin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, 8750 Biological Grade, La Jolla, CA, 92037, USA
| | - Fiorenza Micheli
- Hopkins Marine Station and Center for Ocean Solutions, Stanford University, Pacific Grove, CA, 93950, USA
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, Goddard Bldg, The University of Queensland, St Lucia Qld, 4072, Australia
| | - Kevin S McCann
- University of Guelph, Integrative Biology, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
7
|
Britton JR, Andreou D. Parasitism as a Driver of Trophic Niche Specialisation. Trends Parasitol 2016; 32:437-445. [DOI: 10.1016/j.pt.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
|
8
|
Chiu MC, Huang CG, Wu WJ, Shiao SF. Annual Survey of Horsehair Worm Cysts in Northern Taiwan, with Notes on a Single Seasonal Infection Peak in Chironomid Larvae (Diptera: Chironomidae). J Parasitol 2016; 102:319-26. [PMID: 26885875 DOI: 10.1645/15-907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The life cycle of the freshwater horsehair worm typically includes a free-living phase (adult, egg, larva) and a multiple-host parasitic phase (aquatic paratenic host, terrestrial definitive host). Such a life cycle involving water and land can improve energy flow in riparian ecosystems; however, its temporal dynamics in nature have rarely been investigated. This study examined seasonal infection with cysts in larval Chironominae (Diptera: Chironomidae) in northern Taiwan. In the larval chironomids, cysts of 3 horsehair worm species were identified. The cysts of the dominant species were morphologically similar to those of Chordodes formosanus. Infection with these cysts increased suddenly and peaked 2 mo after the reproductive season of the adult horsehair worms. Although adult C. formosanus emerged several times in a year, only 1 distinct infection peak was detected in September in the chironomid larvae. Compared with the subfamily Chironominae, samples from the subfamilies Tanypodinae and Orthocladiinae were less parasitized. This indicates that the feeding behavior of the chironomid host likely affects horsehair worm cyst infections; however, bioconcentration in predatory chironomids was not detected.
Collapse
Affiliation(s)
- Ming-Chung Chiu
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Chin-Gi Huang
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Jer Wu
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | - Shiuh-Feng Shiao
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
9
|
Umbers KDL, Byatt LJ, Hill NJ, Bartolini RJ, Hose GC, Herberstein ME, Power ML. Prevalence and Molecular Identification of Nematode and Dipteran Parasites in an Australian Alpine Grasshopper (Kosciuscola tristis). PLoS One 2015; 10:e0121685. [PMID: 25919745 PMCID: PMC4412563 DOI: 10.1371/journal.pone.0121685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/11/2015] [Indexed: 01/07/2023] Open
Abstract
In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran populations is under-explored. In this study we describe the relationship between parasite prevalence and host sex, body size and year of collection. We accessed an existing, preserved collection of 640 Kosciuscola tristis collected from across its range between 2007 and 2011. Upon dissection we collected juvenile parasites and used molecular tools to identify them to three families (Nematoda; Mermithidae, and Arthropoda: Diptera: Tachinidae and Sarcophagidae). The prevalence of nematodes ranged from 3.5% to 25.0% and dipterans from 2.4% to 20.0%. Contrary to predictions, we found no associations between parasite prevalence and grasshopper sex or size. Although there was an association between prevalence of both nematodes and dipterans with year of collection, this is likely driven by a small sample size in the first year. Our results provide a foundation for future studies into parasite prevalence within the alpine environment and the abiotic factors that might influence these associations.
Collapse
Affiliation(s)
- Kate D. L. Umbers
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Western Australia, Australia
- School of Science and Health, University of Western Sydney, Sydney, New South Wales, Australia
| | - Lachlan J. Byatt
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Nichola J. Hill
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Remo J. Bartolini
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Grant C. Hose
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Marie E. Herberstein
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
10
|
Sato T, Watanabe K, Tokuchi N, Kamauchi H, Harada Y, Lafferty KD. A nematomorph parasite explains variation in terrestrial subsidies to trout streams in Japan. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19121.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Sato T, Watanabe K, Kanaiwa M, Niizuma Y, Harada Y, Lafferty KD. Nematomorph parasites drive energy flow through a riparian ecosystem. Ecology 2011; 92:201-7. [DOI: 10.1890/09-1565.1] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol 2010; 25:362-71. [PMID: 20185202 DOI: 10.1016/j.tree.2010.01.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/07/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
Abstract
Recent efforts to include parasites in food webs have drawn attention to a previously ignored facet of foraging ecology: parasites commonly function as prey within ecosystems. Because of the high productivity of parasites, their unique nutritional composition and their pathogenicity in hosts, their consumption affects both food-web topology and disease risk in humans and wildlife. Here, we evaluate the ecological, evolutionary and epidemiological significance of feeding on parasites, including concomitant predation, grooming, predation on free-living stages and intraguild predation. Combining empirical data and theoretical models, we show that consumption of parasites is neither rare nor accidental, and that it can sharply affect parasite transmission and food web properties. Broader consideration of predation on parasites will enhance our understanding of disease control, food web structure and energy transfer, and the evolution of complex life cycles.
Collapse
Affiliation(s)
- Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, Campus Box 334, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lefèvre T, Lebarbenchon C, Gauthier-Clerc M, Missé D, Poulin R, Thomas F. The ecological significance of manipulative parasites. Trends Ecol Evol 2008; 24:41-8. [PMID: 19026461 DOI: 10.1016/j.tree.2008.08.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 08/25/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
The diversity of ways in which host manipulation by parasites interferes with ecological and evolutionary processes governing biotic interactions has been recently documented, and indicates that manipulative parasites are full participants in the functioning of ecosystems. Phenotypic alterations in parasitised hosts modify host population ecology, apparent competition processes, food web structure and energy and nutrient flow between habitats, as well as favouring habitat creation. As is usually the case in ecology, these phenomena can be greatly amplified by a series of secondary consequences (cascade effects). Here we review the ecological relevance of manipulative parasites in ecosystems and propose directions for further research.
Collapse
Affiliation(s)
- Thierry Lefèvre
- GEMI/UMR CNRS-IRD 2724, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|