1
|
Liu XF, Karunarathna SC, Tibpromma S, Chethana KWT, Hyde KD, Elgorban AM, Suwannarach N, Kumla J, Mortimer PE, Hughes AC. Understanding the role of bats as fungal vectors in the environment. IMA Fungus 2024; 15:28. [PMID: 39232794 PMCID: PMC11373111 DOI: 10.1186/s43008-024-00161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Bats (Chiroptera), the second largest group of mammals, are known for their unique immune system and their ability to act as vectors for various zoonoses. Bats also act as important carriers of fungi, which include plant, animal, and human pathogens. Their roosting areas, foraging behaviors, and even migration routes make bats ideal vectors for fungi. We isolated 75 culturable fungal species from bats in Yunnan Province, China, with 36 species representing known pathogens of plants, animals, and humans, while 39 species are non-pathogenic fungi. Among these species, 77% (58 species) belonged to Ascomycota, 9% (seven species) belonged to Basidiomycota, and 13% (10 species) belonged to Mucoromycota. Even though several taxonomic studies on fungi associated with bats have been published, studies exploring the role of bats as fungal vectors are lacking. This study discusses the fungi host-specific traits and pathogenicity and the impact and ecological significance of bats as fungal vectors.
Collapse
Affiliation(s)
- Xiang-Fu Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Samantha Chandranath Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
- National Institute Fundamental Studies (NIFS), Kandy, Sri Lanka
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | - K W Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kevin D Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Peter E Mortimer
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, 650201, Yunnan, People's Republic of China.
- Department of Soil Science, Stellenbosch University, Private Bag X1, Matieland, South Africa.
| | - Alice C Hughes
- School of Biological Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong, People's Republic of China.
| |
Collapse
|
2
|
Faria S, Barros P, Bacelar E, Santos M, Carvalho D, Vale-Gonçalves H, Braz L, Travassos P, Cabral JA. A seasonal multi-level trophic approach for bat habitat suitability assessments in peri-urban deciduous forests. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Yue X, Hughes AC, Tomlinson KW, Xia S, Li S, Chen J. Body size and diet–related morphological variation of bats over the past 65 years in China. J Mammal 2019. [DOI: 10.1093/jmammal/gyz161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
We examined both historical (1960s) and recent (2017) specimens of an insectivorous bat species (Hipposideros armiger) and a phytophagous bat (Rousettus leschenaultii) from the same latitudinal range to explore phenotypic responses to environmental change in China over the past 65 years. Hipposideros armiger exhibited significant increases in forearm length and three diet-related cranial traits, as well as carbon and nitrogen stable isotope composition, suggesting that modern H. armiger must travel farther for food and may now use different food resources. In contrast, R. leschenaultii showed no change in forearm length but displayed significant increases in diet-related cranial traits. This study provides evidence for differential responses to recent environmental changes in bat species with different diets. The changes in diet-related traits of the two species and the forearm length change on the insectivorous bats suggest that recent phenotypic changes may be adaptions to land-use changes rather than to climate change.
Collapse
Affiliation(s)
- Xinke Yue
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Kyle W Tomlinson
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Song Li
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| |
Collapse
|
4
|
Zhao H, Wang H, Liu T, Liu S, Jin L, Huang X, Dai W, Sun K, Feng J. Gene expression vs. sequence divergence: comparative transcriptome sequencing among natural Rhinolophus ferrumequinum populations with different acoustic phenotypes. Front Zool 2019; 16:37. [PMID: 31528181 PMCID: PMC6743130 DOI: 10.1186/s12983-019-0336-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Although the sensory drive hypothesis can explain the geographic variation in echolocation frequencies of some bat species, the molecular mechanisms underlying this phenomenon are still unclear. The three lineages of greater horseshoe bat (Rhinolophus ferrumequinum) in China (northeast, central-east, and southwest) have significant geographic variation in resting frequencies (RF) of echolocation calls. Because their cochleae have an acoustic fovea that is highly sensitive to a narrow range of frequencies, we reported the transcriptomes of cochleae collected from three genetic lineages of R. ferrumequinum, which is an ideal organism for studying geographic variation in echolocation signals, and tried to understand the mechanisms behind this bat phenomenon by analyzing gene expression and sequence variation. RESULTS A total of 8190 differentially expressed genes (DEGs) were identified. We identified five modules from all DEGs that were significantly related to RF or forearm length (FL). DEGs in the RF-related modules were significantly enriched in the gene categories involved in neural activity, learning, and response to sound. DEGs in the FL-related modules were significantly enriched in the pathways related to muscle and actin functions. Using 21,945 single nucleotide polymorphisms, we identified 18 candidate unigenes associated with hearing, five of which were differentially expressed among the three populations. Additionally, the gene ERBB4, which regulates diverse cellular processes in the inner ear such as cell proliferation and differentiation, was in the largest module. We also found 49 unigenes that were under positive selection from 4105 one-to-one orthologous gene pairs between the three R. ferrumequinum lineages and three other Chiroptera species. CONCLUSIONS The variability of gene expression and sequence divergence at the molecular level might provide evidence that can help elucidate the genetic basis of geographic variation in echolocation signals of greater horseshoe bats.
Collapse
Affiliation(s)
- Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Hui Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Sen Liu
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000 China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Xiaobin Huang
- Vector Laboratory, Institute of Pathogens and Vectors, Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, 671003 China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
- College of Life Science, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
5
|
Mifsud CM, Vella A. Acoustic characterization of bats from Malta: setting a baseline for monitoring and conservation of bat populations. BIOACOUSTICS 2019. [DOI: 10.1080/09524622.2018.1474138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Clare Marie Mifsud
- Conservation Biology Research Group, Biology Department, University of Malta, Msida, Malta
| | - Adriana Vella
- Conservation Biology Research Group, Biology Department, University of Malta, Msida, Malta
| |
Collapse
|
6
|
Crowley S, Johnson CJ, Hodder DP. Spatio-temporal variation in river otter (Lontra canadensis) diet and latrine site activity. ECOSCIENCE 2015. [DOI: 10.2980/20-1-3509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Lima SL, O'Keefe JM. Do predators influence the behaviour of bats? Biol Rev Camb Philos Soc 2013; 88:626-44. [PMID: 23347323 DOI: 10.1111/brv.12021] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/29/2022]
Abstract
Many aspects of animal behaviour are affected by real-time changes in the risk of predation. This conclusion holds for virtually all taxa and ecological systems studied, but does it hold for bats? Bats are poorly represented in the literature on anti-predator behaviour, which may reflect a lack of nocturnal predators specialized on bats. If bats actually experience a world with minimal anti-predator concerns, then they will provide a unique contrast within the realm of vertebrate ecology. Alternatively, such predator-driven behaviour in bats may not yet be fully understood, given the difficulties in working with these highly mobile and nocturnal animals. We provide a wide-ranging exploration of these issues in bat behaviour. We first cover the basic predator-prey information available on bats, both on potential predators and the ways in which bats might perceive predators and respond to attacks. We then cover work relevant to key aspects of bat behaviour, such as choice of daytime roosts, the nature of sleep and torpor, evening roost departures, moonlight avoidance, landscape-related movement patterns, and habitat selection. Overall, the evidence in favour of a strong influence of predators on bat behaviour is equivocal, with the picture clouded by contradictory results and a lack of information on potential predators and the perception of risk by bats. It seems clear that day-active bats run a considerable risk of being killed by diurnal raptors, which are able to capture bats with relative ease. Thus, bats taking advantage of a pulse of insects just prior to sunset are likely taking risks to gain much-needed energy. Further, the choice of daytime roosts by bats is probably strongly influenced by roost safety. Few studies, however, have directly addressed either of these topics. As a group, insectivorous temperate-zone bats show no clear tendency to avoid apparently risky situations, such as activity on moonlit nights. However, some observations are consistent with the idea that predation risk affects choice of movement paths and feeding areas by temperate-zone bats, as well as the timing of roost departures. The behaviour of tropical bats, on the other hand, seems more generally influenced by predators; this is especially true for tropical nectarivores and frugivores, but also for insectivorous bats. Presumably there are more serious predators on bats in the tropics (e.g. specialized raptors or carnivorous bats), but the identity of these predators is unclear. More information is needed to assess fully the influence of predators on bat behaviour. There is much need for work on the ways in which bats perceive predators via auditory, visual, and olfactory cues, and whether bats have some knowledge of the risks posed by different predators. Also needed is information on how predators attack bats and how bats react to attacking predators. Difficult to obtain, but of critical value, will be information on the nature of the predation risk experienced by bats while away from roosts and during the full darkness of night.
Collapse
Affiliation(s)
- Steven L Lima
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| | | |
Collapse
|
8
|
Marques JT, Pereira MJR, Palmeirim JM. Availability of Food for Frugivorous Bats in Lowland Amazonia: The Influence of Flooding and of River Banks. ACTA CHIROPTEROLOGICA 2012. [DOI: 10.3161/150811012x654862] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Affiliation(s)
- Hayley A. Sherwin
- School of Biological Sciences; Queen's University; Belfast; BT9 7BL; UK
| | - W. Ian Montgomery
- School of Biological Sciences; Queen's University; Belfast; BT9 7BL; UK
| | - Mathieu G. Lundy
- Centre of Irish Bat Research; School of Biological Sciences; Queen's University; Belfast; BT9 7BL; UK
| |
Collapse
|
10
|
Rodríguez-Robles JA, Glaudas X. A two-level problem: habitat selection in relation to prey abundance in an ambush predator, the speckled rattlesnake (Crotalus mitchellii). BEHAVIOUR 2011. [DOI: 10.1163/156853912x623739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|