1
|
Sasaki M, Mitchell A, Booth DJ, Nagelkerken I. Novel ecological interactions alter physiological responses of range-extending tropical and local temperate fishes under ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169413. [PMID: 38114039 DOI: 10.1016/j.scitotenv.2023.169413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Global warming facilitates species range-expansions, leading to novel biological interactions between local and range-expanding species. Little is still known of how such novel interactions modify the performance of interacting species or how these interactions might be altered under climate change. Here, we used an aquarium experiment to investigate the novel ecological interactions between a poleward range-extending coral reef damselfish ("tropical-vagrant") and a local temperate species ("temperate-local") collected from a climate warming hotspot in SE Australia. We measured the effect of novel interactions (isolated vs. paired fish species) on energy expenditure (activity levels, oxidative stress, and antioxidant responses), energy gain (feeding rates), and growth rates of both fish species under present-day (23 °C) and future ocean temperatures (26 °C). Short-term growth rates were faster in both species under novel interactions (paired species), regardless of elevated temperature. Compared to isolated species, activity level, feeding rate and oxidative stress level were also higher in the paired temperate fish but not in the paired tropical fish. The tropical fish showed an increased feeding rate and long-term growth under elevated temperature, irrespective of novel interactions. We conclude that novel ecological interactions under climate change can be an important driver of physiological traits in sympatric tropical and temperate fishes and can mediate critical physiological performance of fishes under ocean warming.
Collapse
Affiliation(s)
- Minami Sasaki
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Angus Mitchell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - David J Booth
- Fish Ecology Lab, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
2
|
Oxidative status of blue tit nestlings varies with habitat and nestling size. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110986. [PMID: 34023537 DOI: 10.1016/j.cbpa.2021.110986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022]
Abstract
Oxidative status has been proposed as an important ecological and evolutionary force given that pro-oxidant metabolites damage molecules, cells and tissues, with fitness consequences for organisms. Consequently, organisms usually face a trade-off between regulating their oxidative status and other physiological traits. However, environmental stressors and the availability of dietary-derived antioxidants vary according to local conditions and, thus, organisms inhabiting different habitats face different oxidative pressures. Still, there is little information on how different environmental conditions influence the oxidative status of animals inhabiting terrestrial environments. In this work, we examined the variation in oxidative status in the blue tit (Cyanistes caeruleus), a bird species with hatching asynchrony. Specifically, we examined the oxidative status of the largest and the smallest nestlings in the brood, inhabiting four forests differing in food availability and ectoparasite prevalence. We measured lipid peroxidation (malondialdehyde; MDA) as a marker of oxidative damage, total antioxidant capacity (Trolox-equivalent antioxidant capacity; TEAC) and antioxidant enzymatic activity (catalase, glutathione S-transferase, glutathione peroxidase) in blood samples. The glutathione peroxidase (GPX) activity differed among the forests, being the highest in the pine forest and the lowest in a mixed oak (Quercus) forest in the most humid area. Lipid peroxidation was higher in larger nestlings, suggesting higher oxidative damage with an increasing growth rate. Neither brood size, laying date, nor ectoparasites were related to the oxidative status of nestlings. These results suggest that nest rearing conditions might shape the oxidative status of birds, having consequences for habitat-dependent variation in regulation of oxidative status.
Collapse
|
3
|
Mendonça R, Vullioud P, Katlein N, Vallat A, Glauser G, Bennett NC, Helfenstein F. Oxidative costs of cooperation in cooperatively breeding Damaraland mole-rats. Proc Biol Sci 2020; 287:20201023. [PMID: 32900314 DOI: 10.1098/rspb.2020.1023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Within cooperatively breeding societies, individuals adjust cooperative contributions to maximize indirect fitness and minimize direct fitness costs. Yet, little is known about the physiological costs of cooperation, which may be detrimental to direct fitness. Oxidative stress, the imbalance between reactive oxygen species (by-products of energy production) and antioxidant protection, may represent such a cost when cooperative behaviours are energetically demanding. Oxidative stress can lead to the accumulation of cellular damage, compromising survival and reproduction, thus mediating the trade-off between these competing life-history traits. Here, we experimentally increased energetically demanding cooperative contributions in captive Damaraland mole-rats (Fukomys damarensis). We quantified oxidative stress-related effects of increased cooperation on somatic and germline tissues, and the trade-off between them. Increased cooperative contributions induced oxidative stress in females and males, without increasing somatic damage. Males accumulated oxidative damage in their germline despite an increase in antioxidant defences. Finally, oxidative damage accumulation became biased towards the germline, while antioxidant protection remained biased towards the soma, suggesting that males favour the maintenance of somatic tissues (i.e. survival over reproduction). Our results show that heightened cooperative contributions can ultimately affect direct fitness through oxidative stress costs, which may represent a key selective pressure for the evolution of cooperation.
Collapse
Affiliation(s)
- Rute Mendonça
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Nathan Katlein
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Fabrice Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
Scriba MF, Gasparini J, Jacquin L, Mettke-Hofmann C, Rattenborg NC, Roulin A. The effect of food quality during growth on spatial memory consolidation in adult pigeons. ACTA ACUST UNITED AC 2016; 220:573-581. [PMID: 27913599 DOI: 10.1242/jeb.152454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
Poor environmental conditions experienced during early development can have negative long-term consequences on fitness. Animals can compensate for negative developmental effects through phenotypic plasticity by diverting resources from non-vital to vital traits such as spatial memory to enhance foraging efficiency. We tested in young feral pigeons (Columba livia) how diets of different nutritional value during development affect the capacity to retrieve food hidden in a spatially complex environment, a process we refer to as 'spatial memory'. Parents were fed with either high- or low-quality food from egg laying until young fledged, after which all young pigeons received the same high-quality diet until memory performance was tested at 6 months of age. The pigeons were trained to learn a food location out of 18 possible locations in one session, and then their memory of this location was tested 24 h later. Birds reared with the low-quality diet made fewer errors in the memory test. These results demonstrate that food quality during development has long-lasting effects on memory, with a moderate nutritional deficit improving spatial memory performance in a foraging context. It might be that under poor feeding conditions resources are redirected from non-vital to vital traits, or pigeons raised with low-quality food might be better in using environmental cues such as the position of the sun to find where food was hidden.
Collapse
Affiliation(s)
- M F Scriba
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-str.5, Seewiesen 82319, Germany .,Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - J Gasparini
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Paris F-75005, France
| | - L Jacquin
- Laboratoire Evolution & Diversité Biologique (EDB), Université Toulouse 3 Paul Sabatier, UPS; CNRS; ENFA, 118 route de Narbonne, Toulouse 31062, France
| | - C Mettke-Hofmann
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - N C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-str.5, Seewiesen 82319, Germany
| | - A Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
5
|
Smith SM, Nager RG, Costantini D. Meta-analysis indicates that oxidative stress is both a constraint on and a cost of growth. Ecol Evol 2016; 6:2833-42. [PMID: 27217942 PMCID: PMC4863009 DOI: 10.1002/ece3.2080] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress (OS) as a proximate mechanism for life‐history trade‐offs is widespread in the literature. One such resource allocation trade‐off involves growth rate, and theory suggests that OS might act as both a constraint on and a cost of growth, yet studies investigating this have produced conflicting results. Here, we use meta‐analysis to investigate whether increased OS levels impact on growth (OS as a constraint on growth) and whether greater growth rates can increase OS (OS as a cost of growth). The role of OS as a constraint on growth was supported by the meta‐analysis. Greater OS, in terms of either increased damage or reduced levels of antioxidants, was associated with reduced growth although the effect depended on the experimental manipulation used. Our results also support an oxidative cost of growth, at least in terms of increased oxidative damage, although faster growth was not associated with a change in antioxidant levels. These findings that OS can act as a constraint on growth support theoretical links between OS and animal life histories and provide evidence for a growth–self‐maintenance trade‐off. Furthermore, the apparent oxidative costs of growth imply individuals cannot alter this trade‐off when faced with enhanced growth. We offer a starting platform for future research and recommend the use of oxidative damage biomarkers in nonlethal tissue to investigate the growth–OS relationship further.
Collapse
Affiliation(s)
- Shona M Smith
- Institute of Biodiversity, Animal Health & Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Ruedi G Nager
- Institute of Biodiversity, Animal Health & Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - David Costantini
- Institute of Biodiversity, Animal Health & Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK; Department of Biology University of Antwerp Antwerp 2610 Belgium
| |
Collapse
|
6
|
Hargitai R, Nyiri Z, Eke Z, Török J. Effects of Temperature and Duration of Storage on the Stability of Antioxidant Compounds in Egg Yolk and Plasma. Physiol Biochem Zool 2016; 89:161-7. [DOI: 10.1086/685453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Dunn JC, Morris AJ, Grice PV. Testing bespoke management of foraging habitat for European turtle doves Streptopelia turtur. J Nat Conserv 2015. [DOI: 10.1016/j.jnc.2015.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Kriengwatana B, Wada H, Schmidt KL, Taves MD, Soma KK, MacDougall-Shackleton SA. Effects of nutritional stress during different developmental periods on song and the hypothalamic-pituitary-adrenal axis in zebra finches. Horm Behav 2014; 65:285-93. [PMID: 24417905 DOI: 10.1016/j.yhbeh.2013.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 12/17/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
In songbirds, developmental stress affects song learning and production. Altered hypothalamic-pituitary-adrenal (HPA) axis function resulting in elevated corticosterone (CORT) may contribute to this effect. We examined whether developmental conditions affected the association between adult song and HPA axis function, and whether nutritional stress before and after nutritional independence has distinct effects on song learning and/or vocal performance. Zebra finches (Taeniopygia guttata) were raised in consistently high (HH) or low (LL) food conditions until post-hatch day (PHD) 62, or were switched from high to low conditions (HL) or vice versa (LH) at PHD 34. Song was recorded in adulthood. We assessed the response of CORT to handling during development and to dexamethasone (DEX) and adrenocorticotropic hormone (ACTH) challenges during adulthood. Song learning and vocal performance were not affected by nutritional stress at either developmental stage. Nutritional stress elevated baseline CORT during development. Nutritional stress also increased rate of CORT secretion in birds that experienced stress only in the juvenile phase (HL group). Birds in the LL group had lower CORT levels after injection of ACTH compared to the other groups, however there was no effect of nutritional stress on the response to DEX. Thus, our findings indicate that developmental stress can affect HPA function without concurrently affecting song.
Collapse
Affiliation(s)
- B Kriengwatana
- Department of Psychology, University of Western Ontario, London, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Canada.
| | - H Wada
- Advanced Facility for Avian Research, University of Western Ontario, London, Canada
| | - K L Schmidt
- Advanced Facility for Avian Research, University of Western Ontario, London, Canada; Department of Biology, University of Western Ontario, London, Canada
| | - M D Taves
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - K K Soma
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - S A MacDougall-Shackleton
- Department of Psychology, University of Western Ontario, London, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Canada; Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
9
|
Pakkala JJ, Norris DR, Newman AEM. An Experimental Test of the Capture-Restraint Protocol for Estimating the Acute Stress Response. Physiol Biochem Zool 2013; 86:279-84. [DOI: 10.1086/668893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Costantini D, Marasco V, Møller AP. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 2011; 181:447-56. [PMID: 21416253 DOI: 10.1007/s00360-011-0566-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/27/2011] [Accepted: 03/03/2011] [Indexed: 01/01/2023]
Abstract
Prolonged high secretion of glucocorticoids normally reflects a state of chronic stress, which has been associated with an increase in disease susceptibility and reduction in Darwinian fitness. Here, we hypothesize that an increase in oxidative stress accounts for the detrimental effects of prolonged high secretion of glucocorticoids. We performed a meta-analysis on studies where physiological stress was induced by administration of glucocorticoids to evaluate the magnitude of their effects on oxidative stress. Glucocorticoids have a significant effect on oxidative stress (Pearson r = 0.552), although this effect depends on the duration of treatment, and is larger in long-term experiments. Importantly, there was a significant effect on tissue, with brain and heart being the most and the least susceptible to GC-induced oxidative stress, respectively. Furthermore, effect size was larger (1) in studies using both sexes compared to males only, (2) when corticosterone rather than dexamethasone was administered and (3) in juveniles than in adults. These effects were not confounded by species, biochemical biomarker, or whether wild or laboratory animals were studied. In conclusion, our meta-analysis suggests that GC-induced oxidative stress could be a further mechanism underlying increases in disease susceptibility and decreases in Darwinian fitness observed under chronic stress.
Collapse
Affiliation(s)
- David Costantini
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | | | | |
Collapse
|