1
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
2
|
Richards RL, Drake JM, Ezenwa VO. Do predators keep prey healthy or make them sicker? A meta-analysis. Ecol Lett 2021; 25:278-294. [PMID: 34738700 DOI: 10.1111/ele.13919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/17/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
Ecological theory suggests that predators can either keep prey populations healthy by reducing parasite burdens or alternatively, increase parasitism in prey. To quantify the overall magnitude and direction of the effect of predation on parasitism in prey observed in practice, we conducted a meta-analysis of 47 empirical studies. We also examined how study attributes, including parasite type and life cycle, habitat type, study design, and whether predators were able to directly consume prey contributed to variation in the predator-prey-parasite interaction. We found that the overall effect of predation on parasitism differed between parasites and parasitoids and that whether consumptive effects were present, and whether a predator was a non-host spreader of parasites, were the most important traits predicting the parasite response. Our results suggest that the mechanistic basis of predator-prey interactions strongly influences the effects of predators on parasites and that these effects, although context dependent, are predictable.
Collapse
Affiliation(s)
- Robert L Richards
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Mechanisms by which predators mediate host-parasite interactions in aquatic systems. Trends Parasitol 2021; 37:890-906. [PMID: 34281798 DOI: 10.1016/j.pt.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
It is often assumed that predators reduce disease prevalence and transmission by lowering prey population density and/or by selectively feeding on infected individuals. However, recent studies, many of which come from aquatic systems, suggest numerous alternative mechanisms by which predators can influence disease dynamics in their prey. Here, we review the mechanisms by which predators can mediate host-parasite interactions in aquatic prey. We highlight how life histories of aquatic hosts and parasites influence transmission pathways and describe how such pathways intersect with predation to shape disease dynamics. We also provide recommendations for future studies; experiments that account for multiple effects of predators on host-parasite interactions, and that examine how predator-host-parasite interactions shift under changing environmental conditions, are particularly needed.
Collapse
|
4
|
Crawford-Ash J, Rowley JJL. Bad neighbours: amphibian chytrid fungus Batrachochytrium dendrobatidis infection dynamics in three co-occurring frog species of southern Sydney, Australia. DISEASES OF AQUATIC ORGANISMS 2021; 143:101-108. [PMID: 33570043 DOI: 10.3354/dao03557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wildlife disease is a major cause of global biodiversity loss. Amongst the most devastating is the disease chytridiomycosis, caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). This disease has contributed to declines and extinctions in hundreds of amphibian species, but not all species are affected equally. Some amphibian hosts are capable of carrying high levels of Bd infection without population declines, acting as reservoir species for the pathogen and driving population declines in sympatric species. In Australia, several species have been proposed as reservoir species; however, our understanding of Bd is derived from studies that are highly geographically and taxonomically biased, and our ability to extrapolate from these systems is unknown. We examined the prevalence and intensity of Bd infection in 3 frog species in a previously unstudied host-pathogen system in temperate eastern Australia: the Blue Mountains tree frog Litoria citropa, a poorly-known species predicted to be susceptible to Bd infection; and the common eastern froglet Crinia signifera and the stony creek frog L. lesueuri, which have both been identified as reservoir species in other regions. We found that L. citropa and L. lesueuri were infected with Bd at a high prevalence and often high intensity, while the reverse was true for C. signifera. All species were detected at moderate abundance and there was no evidence of morbidity and mortality. Our findings do not support C. signifera and L. lesueuri being reservoir species in this system, highlighting the importance of region-specific studies to inform conservation management.
Collapse
Affiliation(s)
- Jordann Crawford-Ash
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW 2010, Australia
| | | |
Collapse
|
5
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
6
|
Zhu Q, Wang Y, Feng J. Rapid diagnosis of largemouth bass ranavirus in fish samples using the loop-mediated isothermal amplification method. Mol Cell Probes 2020; 52:101569. [PMID: 32268179 DOI: 10.1016/j.mcp.2020.101569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Abstract
Largemouth bass ranavirus (LMBV) has been recognized as the causative pathogen responsible for infectious skin ulcerative syndrome in cultured largemouth bass in China. A fast and simple LMBV detection method is urgently needed. Here, a loop-mediated isothermal amplification (LAMP) assay was established for the detection of this virus using primers targeting the major capsid protein gene of LMBV. The amplification conditions were optimized; the assay was specific for the diagnosis of LMBV, as there was no cross-reactivity with other four Iridoviridae viruses (large yellow croaker iridovirus, Singapore grouper iridovirus, tiger frog virus, and soft-shelled turtle iridovirus), grass carp reovirus, white spot syndrome virus, or healthy largemouth bass. The sensitivity of the LAMP assay was found to be 8.55 × 101 copies/μL of LMBV DNA, which was 10-fold higher than that of the conventional PCR. Application of the LAMP assay was evaluated using 10 clinical samples, and the results indicated the reliability of the test as a rapid, field diagnostic tool for LMBV detection. Thus, the simplicity and nearly instrument-free LAMP method provides an alternative for rapid and sensitive detection of LMBV and has great potential for early diagnosis of LMBV infection in the farm.
Collapse
Affiliation(s)
- Qinchao Zhu
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yi Wang
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Junli Feng
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
7
|
Pathogen vs. predator: ranavirus exposure dampens tadpole responses to perceived predation risk. Oecologia 2019; 191:325-334. [PMID: 31535255 DOI: 10.1007/s00442-019-04501-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
There is increasing interest in how animals respond to multiple stressors, including potential synergistic or antagonistic interaction between pathogens and perceived predation risk (PPR). For prey that exhibit phenotypic plasticity, it is unclear whether infection and PPR affect behaviour and morphology independently, or in an antagonistic or synergistic manner. Using a 2 × 2 factorial experiment involving green frog (Lithobates clamitans) tadpoles exposed to ranavirus (FV3) and larval dragonflies (Anax spp.), we assessed whether anti-predator responses were affected by infection. We found that activity and feeding were reduced additively by both stressors. Body mass of tadpoles from FV3-exposed tanks was lighter relative to control and PPR-only tanks, while metabolism was comparable across treatments. We found that FV3 exposure compromised morphometric responses to PPR in an antagonistic manner: tadpoles exposed to both treatments had restricted changes in tail depth compared to those receiving singular treatment. We conclude that multiple stressors can have complex and substantive effects on organisms, and that interactions between stressors may yield a range of responses depending on the level of exposure and sensitivity of the organism. Additional work should more fully determine mechanisms underlying the complex interplay between infection and predation risk, across a range of environmental conditions.
Collapse
|
8
|
Wirth W, Schwarzkopf L, Skerratt LF, Ariel E. Ranaviruses and reptiles. PeerJ 2018; 6:e6083. [PMID: 30581674 PMCID: PMC6295156 DOI: 10.7717/peerj.6083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023] Open
Abstract
Ranaviruses can infect many vertebrate classes including fish, amphibians and reptiles, but for the most part, research has been focused on non-reptilian hosts, amphibians in particular. More recently, reports of ranaviral infections of reptiles are increasing with over 12 families of reptiles currently susceptible to ranaviral infection. Reptiles are infected by ranaviruses that are genetically similar to, or the same as, the viruses that infect amphibians and fish; however, physiological and ecological differences result in differences in study designs. Although ranaviral disease in reptiles is often influenced by host species, viral strain and environmental differences, general trends in pathogenesis are emerging. More experimental studies using a variety of reptile species, life stages and routes of transmission are required to unravel the complexity of wild ranavirus transmission. Further, our understanding of the reptilian immune response to ranaviral infection is still lacking, although the considerable amount of work conducted in amphibians will serve as a useful guide for future studies in reptiles.
Collapse
Affiliation(s)
- Wytamma Wirth
- College of Public Health, Medical and Veterinary Sciences, James Cook University of North Queensland, Townsville, QLD, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia
| | - Lee F Skerratt
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University of North Queensland, Townsville, QLD, Australia
| |
Collapse
|
9
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
10
|
Guariento RD, Carneiro LS, Jorge JS, Caliman A. Assessing the risk effects of native predators on the exotic American bullfrog (Lithobates catesbeianus) and their indirect consequences to ecosystem function. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Kirschman LJ, Crespi EJ, Warne RW. Critical disease windows shaped by stress exposure alter allocation trade‐offs between development and immunity. J Anim Ecol 2017; 87:235-246. [DOI: 10.1111/1365-2656.12778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | - Erica J. Crespi
- School of Biological SciencesWashington State University Pullman WA USA
| | - Robin W. Warne
- Department of ZoologySouthern Illinois University Carbondale IL USA
| |
Collapse
|
12
|
Beehner JC, Bergman TJ. The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness. Horm Behav 2017; 91:68-83. [PMID: 28284709 DOI: 10.1016/j.yhbeh.2017.03.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 11/21/2022]
Abstract
Glucocorticoids are hormones that mediate the energetic demands that accompany environmental challenges. It is therefore not surprising that these metabolic hormones have come to dominate endocrine research on the health and fitness of wild populations. Yet, several problems have been identified in the vertebrate research that also apply to the non-human primate research. First, glucocorticoids should not be used as a proxy for fitness (unless a link has previously been established between glucocorticoids and fitness for a particular population). Second, stress research in behavioral ecology has been overly focused on "chronic stress" despite little evidence that chronic stress hampers fitness in wild animals. Third, research effort has been disproportionately focused on the causes of glucocorticoid variation rather than the fitness consequences. With these problems in mind, we have three objectives for this review. We describe the conceptual framework behind the "stress concept", emphasizing that high glucocorticoids do not necessarily indicate a stress response, and that a stress response does not necessarily indicate an animal is in poor health. Then, we conduct a comprehensive review of all studies on "stress" in wild primates, including any study that examined environmental factors, the stress response, and/or fitness (or proxies for fitness). Remarkably, not a single primate study establishes a connection between all three. Finally, we provide several recommendations for future research in the field of primate behavioral endocrinology, primarily the need to move beyond identifying the factors that cause glucocorticoid secretion to additionally focus on the relationship between glucocorticoids and fitness. We believe that this is an important next step for research on stress physiology in primates.
Collapse
Affiliation(s)
- Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Thore J Bergman
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
13
|
Vantaux A, Lefèvre T, Cohuet A, Dabiré KR, Roche B, Roux O. Larval nutritional stress affects vector life history traits and human malaria transmission. Sci Rep 2016; 6:36778. [PMID: 27827429 PMCID: PMC5101500 DOI: 10.1038/srep36778] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/17/2016] [Indexed: 11/15/2022] Open
Abstract
Exposure to stress during an insect’s larval development can have carry-over effects on adult life history traits and susceptibility to pathogens. We investigated the effects of larval nutritional stress for the first time using field mosquito vectors and malaria parasites. In contrast to previous studies, we show that larval nutritional stress may affect human to mosquito transmission antagonistically: nutritionally deprived larvae showed lower parasite prevalence for only one gametocyte carrier; they also had lower fecundity. However, they had greater survival rates that were even higher when infected. When combining these opposing effects into epidemiological models, we show that larval nutritional stress induced a decrease in malaria transmission at low mosquito densities and an increase in transmission at high mosquito densities, whereas transmission by mosquitoes from well-fed larvae was stable. Our work underscores the importance of including environmental stressors towards understanding host–parasite dynamics to improve disease transmission models and control.
Collapse
Affiliation(s)
- Amélie Vantaux
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-UM, Montpellier, France.,Institut de Recherche en Sciences de la Santé (IRSS), 01BP171 Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-UM, Montpellier, France.,Institut de Recherche en Sciences de la Santé (IRSS), 01BP171 Bobo-Dioulasso, Burkina Faso
| | - Anna Cohuet
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-UM, Montpellier, France.,Institut de Recherche en Sciences de la Santé (IRSS), 01BP171 Bobo-Dioulasso, Burkina Faso
| | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), 01BP171 Bobo-Dioulasso, Burkina Faso.,Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Benjamin Roche
- UMMISCO (Unité de Modélisation Mathématique et Informatique des Systèmes Complexes), UMI IRD/UPMC 209, Bondy, France
| | - Olivier Roux
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-UM, Montpellier, France.,Institut de Recherche en Sciences de la Santé (IRSS), 01BP171 Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
14
|
Terrestrial Growth in Northern Leopard Frogs Reared in the Presence or Absence of Predators and Exposed to the Amphibian Chytrid Fungus at Metamorphosis. J HERPETOL 2016. [DOI: 10.1670/15-102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Rothermel BB, Miller DL, Travis ER, Gonynor McGuire JL, Jensen JB, Yabsley MJ. Disease dynamics of red-spotted newts and their anuran prey in a montane pond community. DISEASES OF AQUATIC ORGANISMS 2016; 118:113-127. [PMID: 26912042 DOI: 10.3354/dao02965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Long-term monitoring of amphibians is needed to clarify population-level effects of ranaviruses (Rv) and the fungal pathogen Batrachochytrium dendrobatidis (Bd). We investigated disease dynamics of co-occurring amphibian species and potential demographic consequences of Rv and Bd infections at a montane site in the Southern Appalachians, Georgia, USA. Our 3-yr study was unique in combining disease surveillance with intensive population monitoring at a site where both pathogens are present. We detected sub-clinical Bd infections in larval and adult red-spotted newts Notophthalmus viridescens viridescens, but found no effect of Bd on body condition of adult newts. Bd infections also occurred in larvae of 5 anuran species that bred in our fishless study pond, and we detected co-infections with Bd and Rv in adult newts and larval green frogs Lithobates clamitans. However, all mortality and clinical signs in adult newts and larval anurans were most consistent with ranaviral disease, including a die-off of larval wood frogs Lithobates sylvaticus in small fish ponds located near our main study pond. During 2 yr of drift fence monitoring, we documented high juvenile production in newts, green frogs and American bullfrogs L. catesbeianus, but saw no evidence of juvenile recruitment in wood frogs. Larvae of this susceptible species may have suffered high mortality in the presence of both Rv and predators. Our findings were generally consistent with results of Rv-exposure experiments and support the purported role of red-spotted newts, green frogs, and American bullfrogs as common reservoirs for Bd and/or Rv in permanent and semi-permanent wetlands.
Collapse
|
16
|
Crespi EJ, Rissler LJ, Mattheus NM, Engbrecht K, Duncan SI, Seaborn T, Hall EM, Peterson JD, Brunner JL. Geophysiology of Wood Frogs: Landscape Patterns of Prevalence of Disease and Circulating Hormone Concentrations across the Eastern Range. Integr Comp Biol 2015; 55:602-17. [PMID: 26269462 DOI: 10.1093/icb/icv096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the major challenges for conservation physiologists is to determine how current or future environmental conditions relate to the health of animals at the population level. In this study, we measured prevalence of disease, mean condition of the body, and mean resting levels of corticosterone and testosterone in a total of 28 populations across the years 2011 and 2012, and correlated these measures of health to climatic suitability of habitat, using estimates from a model of the ecological niche of the wood frog's geographic range. Using the core-periphery hypothesis as a theoretical framework, we predicted a higher prevalence and intensity of infection of Batrachochytrium dendrobatidis (Bd) and ranaviruses, two major amphibian pathogens causing disease, and higher resting levels of circulating corticosterone, an indicator of allostatic load incurred from living in marginal habitats. We found that Bd infections were rare (2% of individuals tested), while infections with ranavirus were much more common: ranavirus-infected individuals were found in 92% of ponds tested over the 2 years. Contrary to our predictions, rates of infection with ranaviruses were positively correlated with quality of the habitat with the highest prevalence at the core of the range, and plasma corticosterone concentrations measured when frogs were at rest were not correlated with quality of the habitat, the prevalence of ranavirus, or the intensity of infection. Prevalence and mean viral titers of ranavirus infection were higher in 2012 than in 2011, which coincided with lower levels of circulating corticosterone and testosterone and an extremely early time of breeding due to relatively higher temperatures during the winter. In addition, the odds of having a ranavirus infection increased with decreased body condition, and if animals had an infection, viral titers were positively correlated to levels of circulating testosterone concentration. By resolving these patterns, experiments can be designed to test hypotheses about the mechanisms that produce them, such as whether transmission of the ranavirus and tolerance of the host are greater or whether virulence is lower in populations within core habitats. While there is debate about which metrics serve as the best bioindicators of population health, the findings of this study demonstrate the importance of long-term monitoring of multiple physiological parameters to better understand the dynamic relationship between the environment and the health of wildlife populations over space and time.
Collapse
Affiliation(s)
- Erica J Crespi
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Leslie J Rissler
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nichole M Mattheus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kristin Engbrecht
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Sarah I Duncan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Travis Seaborn
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Emily M Hall
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - John D Peterson
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; Department of Biology, University of Wisconsin-Platteville, Platteville, WI 538183, USA
| | - Jesse L Brunner
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
17
|
Winzeler ME, Hamilton MT, Tuberville TD, Lance SL. First case of ranavirus and associated morbidity and mortality in an eastern mud turtle Kinosternon subrubrum in South Carolina. DISEASES OF AQUATIC ORGANISMS 2015; 114:77-81. [PMID: 25958808 DOI: 10.3354/dao02849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ranaviruses are double-stranded DNA viruses that infect amphibians, fish, and reptiles, causing global epidemics in some amphibian populations. It is important to identify new species that may be susceptible to the disease, particularly if they reside in the same habitat as other at-risk species. On the Savannah River Site (SRS) in Aiken, South Carolina, USA, ranaviruses are present in several amphibian populations, but information is lacking on the presence, prevalence, and morbidity of the virus in reptile species. An eastern mud turtle Kinosternon subrubrum captured on the SRS in April 2014 exhibited clinical signs of a ranaviral infection, including oral plaque and conjunctivitis. Quantitative PCR analyses of DNA from liver tissue, ocular, oral, nasal, and cloacal swabs were all positive for ranavirus, and sequencing of the template confirmed infection with a FV3-like ranavirus. Histopathologic examination of postmortem tissue samples revealed ulceration of the oral and tracheal mucosa, intracytoplasmic epithelial inclusions in the oral mucosa and tongue sections, individualized and clusters of melanomacrophages in the liver, and bacterial rods located in the liver, kidney, heart, stomach, and small intestine. This is the first report of morbidity and mortality of a mud turtle with a systemic ranaviral infection.
Collapse
Affiliation(s)
- Megan E Winzeler
- Savannah River Ecology Lab, University of Georgia, Drawer E, Aiken, SC 29802, USA
| | | | | | | |
Collapse
|
18
|
Zanette LY, Clinchy M, Suraci JP. Diagnosing predation risk effects on demography: can measuring physiology provide the means? Oecologia 2014; 176:637-51. [PMID: 25234371 DOI: 10.1007/s00442-014-3057-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
Abstract
Predators kill prey thereby affecting prey survival and, in the traditional top-down view of predator limitation, that is their sole effect. Bottom-up food limitation alters the physiological condition of individuals affecting both fecundity and survival. Predators of course also scare prey inducing anti-predator defences that may carry physiological costs powerful enough to reduce prey fecundity and survival. Here, we consider whether measuring physiology can be used as a tool to unambiguously diagnose predation risk effects. We begin by providing a review of recent papers reporting physiological effects of predation risk. We then present a conceptual framework describing the pathways by which predators and food can affect prey populations and give an overview of predation risk effects on demography in various taxa. Because scared prey typically eat less the principal challenge we see will be to identify measures that permit us to avoid mistaking predator-induced reductions in food intake for absolute food shortage. To construct an effective diagnostic toolkit we advocate collecting multiple physiological measures and utilizing multivariate statistical procedures. We recommend conducting two-factor predation risk × food manipulations to identify those physiological effects least likely to be mistaken for responses to bottom-up food limitation. We suggest there is a critical need to develop a diagnostic tool that can be used when it is infeasible to experimentally test for predation risk effects on demography, as may often be the case in wildlife conservation, since failing to consider predation risk effects may cause the total impact of predators to be dramatically underestimated.
Collapse
Affiliation(s)
- Liana Y Zanette
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada,
| | | | | |
Collapse
|
19
|
Janssens L, Stoks R. Reinforcing effects of non-pathogenic bacteria and predation risk: from physiology to life history. Oecologia 2014; 176:323-32. [PMID: 25103326 DOI: 10.1007/s00442-014-3030-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 07/22/2014] [Indexed: 01/15/2023]
Abstract
The important ecological role of predation risk in shaping populations, communities and ecosystems is becoming increasingly clear. In this context, synergistic effects between predation risk and other natural stressors on prey organisms are gaining attention. Although non-pathogenic bacteria can be widespread in aquatic ecosystems, their role in mediating effects of predation risk has been ignored. We here address the hypothesis that non-pathogenic bacteria may reinforce the negative effects of predation risk in larvae of the damselfly Coenagrion puella. We found synergistic effects for all three life history variables studied: mortality increased, growth reductions were magnified and bacterial load was higher when both non-lethal stressors were combined. The combined exposure to the bacterium and predation risk considerably impaired the two key antipredator mechanisms of the damselfly larvae: they no longer reduced their food intake under predation risk and showed a synergistic reduction in escape swimming speed. The reinforcing negative effects on the fitness-related traits could be explained by the observed synergistic effects on food intake, swimming muscle mass, immune function and oxidative damage. These are likely widespread consequences of energetic constraints and increased metabolic rates associated with the fight-or-flight response. We therefore hypothesize that the here documented synergistic interactions with non-pathogenic bacteria may be widespread. Our results highlight the ignored ecological role of non-pathogenic bacteria in reinforcing the negative effects of predation risk on prey organisms.
Collapse
Affiliation(s)
- Lizanne Janssens
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, 3000, Louvain, Belgium,
| | | |
Collapse
|
20
|
Searle CL, Belden LK, Du P, Blaustein AR. Stress and chytridiomycosis: exogenous exposure to corticosterone does not alter amphibian susceptibility to a fungal pathogen. ACTA ACUST UNITED AC 2014; 321:243-53. [PMID: 24610865 DOI: 10.1002/jez.1855] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 12/19/2013] [Accepted: 01/15/2014] [Indexed: 11/11/2022]
Abstract
Recent emergence and spread of the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been attributed to a number of factors, including environmental stressors that increase host susceptibility to Bd. Physiological stress can increase circulating levels of the hormone, corticosterone, which can alter a host's physiology and affect its susceptibility to pathogens. We experimentally elevated whole-body levels of corticosterone in both larval and post-metamorphic amphibians, and subsequently tested their susceptibility to Bd. Larvae of three species were tested (Anaxyrus boreas, Rana cascadae, and Lithobates catesbeianus) and one species was tested after metamorphosis (R. cascadae). After exposure to Bd, we measured whole-body corticosterone, infection, mortality, growth, and development. We found that exposure to exogenous corticosterone had no effect on Bd infection in any species or at either life stage. Species varied in whole-body corticosterone levels and exposure to corticosterone reduced mass in A. boreas and R. cascadae larvae. Exposure to Bd did not affect mortality, but had a number of sublethal effects. Across species, larvae exposed to Bd had higher corticosterone levels than unexposed larvae, but the opposite pattern was found in post-metamorphic R. cascadae. Bd exposure also increased larval length in all species and increased mass in R. cascadae larvae. Our results indicate that caution is warranted in assuming a strong link between elevated levels of corticosterone and disease susceptibility in amphibians. The role of physiological stress in altering Bd prevalence in amphibian populations is likely much more complicated than can be explained by examining a single "stress" endpoint.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan; Department of Zoology, Oregon State University, Corvallis, Oregon
| | | | | | | |
Collapse
|
21
|
Evaluating group housing strategies for the ex-situ conservation of harlequin frogs (Atelopus spp.) using behavioral and physiological indicators. PLoS One 2014; 9:e90218. [PMID: 24587290 PMCID: PMC3934986 DOI: 10.1371/journal.pone.0090218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/27/2014] [Indexed: 12/02/2022] Open
Abstract
We have established ex situ assurance colonies of two endangered Panamanian harlequin frogs, Atelopus certus and Atelopus glyphus, but observed that males fought with each other when housed as a group. Housing frogs individually eliminated this problem, but created space constraints. To evaluate the potential stress effects from aggressive interactions when grouping frogs, we housed male frogs in replicated groups of one, two, and eight. We measured aggressive behavioral interactions and fecal glucocorticoid metabolite (GC) concentrations as indicators of stress in each tank. In both small and large groups, frogs initially interacted aggressively, but aggressive interactions and fecal GCs declined significantly after the first 2 weeks of being housed together, reaching the lowest levels by week 4. We conclude that aggressive interactions in same-sex groups of captive Atelopus may initially cause stress, but the frogs become habituated within a few weeks and they can safely be housed in same-sex groups for longer periods of time.
Collapse
|
22
|
Reeve BC, Crespi EJ, Whipps CM, Brunner JL. Natural stressors and ranavirus susceptibility in larval wood frogs (Rana sylvatica). ECOHEALTH 2013; 10:190-200. [PMID: 23579812 DOI: 10.1007/s10393-013-0834-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Chronic exposure to stressors has been shown to suppress immune function in vertebrates, making them more susceptible to pathogens. It is less clear, however, whether many natural stressors are immunosuppressive. Moreover, whether stressors make disease more likely or more severe in populations is unclear because animals respond to stressors both behaviorally and physiologically. We tested whether chronic exposure to three natural stressors of wood frog tadpoles-high-densities, predator-cues, and low-food conditions-influence their susceptibility to a lethal ranavirus both individually in laboratory experiments, and collectively in outdoor mesocosms. Prior to virus exposure, we observed elevated corticosterone only in low-food treatments, although other treatments altered rates of growth and development as well as tadpole behavior. None of the treatments, however, increased susceptibility to ranavirus as measured by the proportion of tadpoles that became infected or died, or the time to death compared to controls. In fact, mortality in the mesocosms was actually lower in the high-density treatment even though most individuals became infected, largely because of increased rates of metamorphosis. Overall we find no support for the hypothesis that chronic exposure to common, ecologically relevant challenges necessarily elevates corticosterone levels in a population or leads to more severe ranaviral disease or epidemics. Conditions may, however, conspire to make ranavirus infection more common in metamorphosing amphibians.
Collapse
Affiliation(s)
- Brooke C Reeve
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY, USA
| | | | | | | |
Collapse
|