1
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
2
|
Liénard F, Freyssingeas É, Borgnat P. A multiscale time-Laplace method to extract relaxation times from non-stationary dynamic light scattering signals. J Chem Phys 2022; 156:224901. [PMID: 35705415 DOI: 10.1063/5.0088005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dynamic Light Scattering (DLS) is a well-known technique to study the relaxation times of systems at equilibrium. In many soft matter systems, we actually have to consider non-equilibrium or non-stationary situations. We discuss here the principles, the signal processing techniques we developed, based on regularized inverse Laplace transform, sliding with time, and the light scattering signal acquisition, which enable us to use DLS experiments in this general situation. In this article, we show how to obtain such a time-Laplace analysis. We claim that this method can be adapted to numerous DLS experiments dealing with non-equilibrium systems so as to extract the non-stationary distribution of relaxation times. To prove that, we test this time-Laplace method on three different non-equilibrium processes or systems investigated by means of the DLS technique: the cooling kinetics of a colloidal particle solution, the sol-gel transition and the internal dynamics of a living cell nucleus.
Collapse
Affiliation(s)
- François Liénard
- ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | | | - Pierre Borgnat
- ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
3
|
Brunel B, Levy V, Millet A, Dolega ME, Delon A, Pierrat R, Cappello G. Measuring cell displacements in opaque tissues: dynamic light scattering in the multiple scattering regime. BIOMEDICAL OPTICS EXPRESS 2020; 11:2277-2297. [PMID: 32341883 PMCID: PMC7173902 DOI: 10.1364/boe.388360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 05/30/2023]
Abstract
Coherent light scattered by tissues brings structural and dynamic information, at depth, that standard imaging techniques cannot reach. Dynamics of cells or sub-cellular elements can be measured thanks to dynamic light scattering in thin samples (single scattering regime) or thanks to diffusive wave spectroscopy in thick samples (diffusion regime). Here, we address the intermediate regime and provide an analytical relationship between scattered light fluctuations and the distribution of cell displacements as a function of time. We illustrate our method by characterizing cell motility inside half millimeter thick multicellular aggregates.
Collapse
Affiliation(s)
- Benjamin Brunel
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Vincent Levy
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Arnaud Millet
- Institute for Advanced Biosciences, Inserm U1209 - CNRS UMR 5309, Université Grenoble Alpes, F-38000 Grenoble, France
- Research Department, University Hospital of Grenoble Alpes, F-38000 Grenoble, France
| | - Monika Elzbieta Dolega
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Antoine Delon
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Romain Pierrat
- ESPCI Paris, PSL University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France
| | - Giovanni Cappello
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| |
Collapse
|
4
|
Mohsin ASM, Salim MB. Probing the intracellular refractive index and molecular interaction of gold nanoparticles in HeLa cells using single particle spectroscopy. Int J Nanomedicine 2018; 13:6019-6028. [PMID: 30323589 PMCID: PMC6177377 DOI: 10.2147/ijn.s175523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We have introduced a novel method to quantify the intracellular refractive index (RI) of living cells and determine the molecular interaction of two interacting molecules using single particle spectroscopy. The advantages of this proposed technique over fluorescence-based imaging techniques is that it does not require any contrasting agent and it does not blink and bleach. Instead, our technique provides a non-destructive, non-invasive, high-resolution imaging of live cells. METHODS To verify our technique, we initially tested our approach for a dielectric medium where gold nanoparticles (AuNPs) were embedded in a polyvinyl alcohol (PVA) matrix, which was then extended to the cellular environment. In the dielectric medium, we identified the single particle and dimer and determined the interparticle distance of AuNPs using confocal laser scattering microscopy. We also determined the single particle RI from dark-field scattering microscopy images, which was confirmed with Mie theory and finite-difference time-domain (FDTD) simulated results. The single particle spectroscopy and microscopy technique was then extended to determine the intracellular RI and biomolecular interaction inside living cells using hyperspectral imaging and dark-field scattering microscopy. RESULTS The novelty of the paper lies in the demonstration of a direct and accurate method to probe the intracellular RI and molecular interaction focused on single particle analysis whereas previous demonstrations were based on AuNP ensembles. Optically acquired single particle and dimer images was verified by correlated SEM images also optical spectrum with analytical models and FDTD simulations for both the dielectric and cellular environment. We reported the interparticle distance of AuNPs inside HeLa cells and intracellular refractive index, which was also confirmed with Mie Theory and extensive FDTD simulations. CONCLUSION Moreover, we believe that our in-depth plasmonic NP-based alternate imaging technique will provide a new insight in monitoring cellular dynamics and tracking the targeted NPs within live cells, enabling us to use plasmonic NPs as an intracellular biosensor.
Collapse
Affiliation(s)
- Abu S M Mohsin
- Centre for Micro-Photonics, Department of Physics, Swinburne University of Technology, Melbourne, VIC 3122, Australia,
| | - Mariam B Salim
- Electrical and Telecommunication Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| |
Collapse
|
5
|
Choi H, Li Z, Sun H, Merrill D, Turek J, Childress M, Nolte D. Biodynamic digital holography of chemoresistance in a pre-clinical trial of canine B-cell lymphoma. BIOMEDICAL OPTICS EXPRESS 2018; 9:2214-2228. [PMID: 29760982 PMCID: PMC5946783 DOI: 10.1364/boe.9.002214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 05/08/2023]
Abstract
Biodynamic digital holography was used to obtain phenotypic profiles of canine non-Hodgkin B-cell lymphoma biopsies treated with standard-of-care chemotherapy. Biodynamic signatures from the living 3D tissues were extracted using fluctuation spectroscopy from intracellular Doppler light scattering in response to the molecular mechanisms of action of therapeutic drugs that modify a range of internal cellular motions. The standard-of-care to treat B-cell lymphoma in both humans and dogs is a combination CHOP therapy that consists of doxorubicin, prednisolone, cyclophosphamide and vincristine. The proportion of dogs experiencing durable cancer remission following CHOP chemotherapy was 68%, with 13 out of 19 dogs responding favorably to therapy and 6 dogs failing to have progression-free survival times greater than 100 days. Biodynamic signatures were found that correlate with inferior survival times, and biomarker selection was optimized to identify specific Doppler signatures related to chemoresistance. A machine learning classifier was constructed based on feature vector correlations and linear separability in high-dimensional feature space. Hold-out validation predicted patient response to therapy with 84% accuracy. These results point to the potential for biodynamic profiling to contribute to personalized medicine by aiding the selection of chemotherapy for cancer patients.
Collapse
Affiliation(s)
- Honggu Choi
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave, West Lafayette, IN 47907, USA
| | - Zhe Li
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave, West Lafayette, IN 47907, USA
| | - Hao Sun
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave, West Lafayette, IN 47907, USA
| | - Dan Merrill
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave, West Lafayette, IN 47907, USA
| | - John Turek
- College of Veterinary Medicine Purdue University, 625 Harrison St, West Lafayette, IN 47907, USA
| | - Michael Childress
- College of Veterinary Medicine Purdue University, 625 Harrison St, West Lafayette, IN 47907, USA
| | - David Nolte
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Full-Field Optical Coherence Tomography as a Diagnosis Tool: Recent Progress with Multimodal Imaging. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Sun H, Merrill D, An R, Turek J, Matei D, Nolte DD. Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:16007. [PMID: 28301634 PMCID: PMC5221565 DOI: 10.1117/1.jbo.22.1.016007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/28/2016] [Indexed: 05/04/2023]
Abstract
Three-dimensional (3-D) tissue culture represents a more biologically relevant environment for testing new drugs compared to conventional two-dimensional cancer cell culture models. Biodynamic imaging is a high-content 3-D optical imaging technology based on low-coherence interferometry and digital holography that uses dynamic speckle as high-content image contrast to probe deep inside 3-D tissue. Speckle contrast is shown to be a scaling function of the acquisition time relative to the persistence time of intracellular transport and hence provides a measure of cellular activity. Cellular responses of 3-D multicellular spheroids to paclitaxel are compared among three different growth techniques: rotating bioreactor (BR), hanging-drop (HD), and nonadherent (U-bottom, UB) plate spheroids, compared with ex vivo living tissues. HD spheroids have the most homogeneous tissue, whereas BR spheroids display large sample-to-sample variability as well as spatial heterogeneity. The responses of BR-grown tumor spheroids to paclitaxel are more similar to those of ex vivo biopsies than the responses of spheroids grown using HD or plate methods. The rate of mitosis inhibition by application of taxol is measured through tissue dynamics spectroscopic imaging, demonstrating the ability to monitor antimitotic chemotherapy. These results illustrate the potential use of low-coherence digital holography for 3-D pharmaceutical screening applications.
Collapse
Affiliation(s)
- Hao Sun
- Purdue University, Department of Physics, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Daniel Merrill
- Purdue University, Department of Physics, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Ran An
- Animated Dynamics, Inc., 5770 Decatur Boulevard Suite A, Indianapolis, Indiana 46241, United States
| | - John Turek
- Purdue University, Department of Basic Medical Sciences, West Lafayette, 625 Harrison Street, Indiana 47907, United States
| | - Daniela Matei
- Northwestern University School of Medicine, 303 East SuperiorChicago, Illinois 60611, United States
| | - David D. Nolte
- Purdue University, Department of Physics, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography. J Cereb Blood Flow Metab 2013; 33:819-25. [PMID: 23403378 PMCID: PMC3677104 DOI: 10.1038/jcbfm.2013.20] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper describes a novel optical method for label-free quantitative imaging of cerebral blood flow (CBF) and intracellular motility (IM) in the rodent cerebral cortex. This method is based on a technique that integrates dynamic light scattering (DLS) and optical coherence tomography (OCT), named DLS-OCT. The technique measures both the axial and transverse velocities of CBF, whereas conventional Doppler OCT measures only the axial one. In addition, the technique produces a three-dimensional map of the diffusion coefficient quantifying nontranslational motions. In the DLS-OCT diffusion map, we observed high-diffusion spots, whose locations highly correspond to neuronal cell bodies and whose diffusion coefficient agreed with that of the motion of intracellular organelles reported in vitro in the literature. Therefore, the present method has enabled, for the first time to our knowledge, label-free imaging of the diffusion-like motion of intracellular organelles in vivo. As an example application, we used the method to monitor CBF and IM during a brief ischemic stroke, where we observed an induced persistent reduction in IM despite the recovery of CBF after stroke. This result supports that the IM measured in this study represent the cellular energy metabolism-related active motion of intracellular organelles rather than free diffusion of intracellular macromolecules.
Collapse
|
9
|
Nolte DD, An R, Turek J, Jeong K. Holographic tissue dynamics spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:087004. [PMID: 21895331 DOI: 10.1117/1.3615970] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tissue dynamics spectroscopy uses digital holography as a coherence gate to extract depth-resolved quasi-elastic dynamic light scattering from inside multicellular tumor spheroids. The temporal speckle contrast provides endogenous dynamical images of proliferating and hypoxic or necrotic tissues. Fluctuation spectroscopy similar to diffusing wave spectroscopy is performed on the dynamic speckle to generate tissue-response spectrograms that track time-resolved changes in intracellular motility in response to environmental perturbations. The spectrograms consist of several frequency bands that range from 0.005 to 5 Hz. The fluctuation spectral density and temporal autocorrelations show the signature of constrained anomalous diffusion, but with large fluctuation amplitudes caused by active processes far from equilibrium. Differences in the tissue-response spectrograms between the proliferating outer shell and the hypoxic inner core differentiate normal from starved conditions. The differential spectrograms provide an initial library of tissue-response signatures to environmental conditions of temperature, osmolarity, pH, and serum growth factors.
Collapse
Affiliation(s)
- David D Nolte
- Purdue University, Department of Physics, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
10
|
Nolte DD, An R, Turek J, Jeong K. Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening. ACTA ACUST UNITED AC 2011; 16:431-42. [PMID: 22093300 DOI: 10.1016/j.jala.2011.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Indexed: 12/16/2022]
Abstract
Tissue dynamics spectroscopy combines dynamic light scattering with short-coherence digital holography to capture intracellular motion inside multicellular tumor spheroid tissue models. The cellular mechanical activity becomes an endogenous imaging contrast agent for motility contrast imaging. Fluctuation spectroscopy is performed on dynamic speckle from the proliferating shell and hypoxic core to generate drug-response spectrograms that are frequency versus time representations of the changes in spectral content induced by an applied compound or an environmental perturbation. A combination of 28 reference compounds and conditions applied to rat osteogenic UMR-106 spheroids generated spectrograms that were crosscorrelated in a similarity matrix used for unsupervised hierarchical clustering of similar compound responses. This work establishes the feasibility of tissue dynamics spectroscopy for three-dimensional tissue-based phenotypic profiling of drug response as a fully endogenous probe of the response of tissue to reference compounds.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
11
|
Barbara A, Lopez-Rios T, Dumont S, Gay F, Quémerais P. Microscope spectrometer for light scattering investigations. APPLIED OPTICS 2010; 49:4193-4201. [PMID: 20676173 DOI: 10.1364/ao.49.004193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We describe a setup including a microscope to study volumes of a few mum(3) by static and dynamic light scattering (DLS) in a backscattering configuration. Light scattered by individual objects of micrometric size can be analyzed in the 400-800?nm spectral range. This setup can also be employed to study both diluted and concentrated colloidal solutions by DLS measurements. For diluted solutions we found evidence of the fluctuations of the number of particles in a confocal volume. We discuss their contribution to the autocorrelation function of the scattered intensity measured as a function of time.
Collapse
Affiliation(s)
- Aude Barbara
- Institut Néel, CNRS and University Joseph Fourier, BP 166, 38042 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
12
|
Suissa M, Place C, Goillot E, Freyssingeas E. Evolution of the global internal dynamics of a living cell nucleus during interphase. Biophys J 2009; 97:453-61. [PMID: 19619459 DOI: 10.1016/j.bpj.2009.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/27/2022] Open
Abstract
Progress in cellular biology based on fluorescent microscopy techniques, shows that the spatial organization of the nucleus is dynamic. This dynamic is very complex and involves a multitude of phenomena that occur on very different time and size scales. Using an original light scattering experimental device, we investigated the global internal dynamics of the nucleus of a living cell according to the phases of the cell cycle. This dynamic presents two different and independent kinds of relaxation that are well separated in time and specific to the phase of the cell cycle.
Collapse
Affiliation(s)
- M Suissa
- Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | |
Collapse
|