1
|
Marecik S, Pudełko-Prażuch I, Balasubramanian M, Ganesan SM, Chatterjee S, Pielichowska K, Kandaswamy R, Pamuła E. Effect of the Addition of Inorganic Fillers on the Properties of Degradable Polymeric Blends for Bone Tissue Engineering. Molecules 2024; 29:3826. [PMID: 39202905 PMCID: PMC11356924 DOI: 10.3390/molecules29163826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Bone tissue exhibits self-healing properties; however, not all defects can be repaired without surgical intervention. Bone tissue engineering offers artificial scaffolds, which can act as a temporary matrix for bone regeneration. The aim of this study was to manufacture scaffolds made of poly(lactic acid), poly(ε-caprolactone), poly(propylene fumarate), and poly(ethylene glycol) modified with bioglass, beta tricalcium phosphate (TCP), and/or wollastonite (W) particles. The scaffolds were fabricated using a gel-casting method and observed with optical and scanning electron microscopes. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), wettability, and degradation tests were conducted. The highest content of TCP without W in the composition caused the highest hydrophilicity (water contact angle of 61.9 ± 6.3°), the fastest degradation rate (7% mass loss within 28 days), moderate ability to precipitate CaP after incubation in PBS, and no cytotoxicity for L929 cells. The highest content of W without TCP caused the highest hydrophobicity (water contact angle of 83.4 ± 1.7°), the lowest thermal stability, slower degradation (3% mass loss within 28 days), and did not evoke CaP precipitation. Moreover, some signs of cytotoxicity on day 1 were observed. The samples with both TCP and W showed moderate properties and the best cytocompatibility on day 4. Interestingly, they were covered with typical cauliflower-like hydroxyapatite deposits after incubation in phosphate-buffered saline (PBS), which might be a sign of their excellent bioactivity.
Collapse
Affiliation(s)
- Stanisław Marecik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Iwona Pudełko-Prażuch
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Mareeswari Balasubramanian
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Sundara Moorthi Ganesan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Suvro Chatterjee
- Department of Biotechnology, Golapbag Campus, University of Burdwan, Burdwan 713 104, West Bengal, India;
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| | - Ravichandran Kandaswamy
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, Tamil Nadu, India; (M.B.); (S.M.G.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; (S.M.); (I.P.-P.)
| |
Collapse
|
2
|
Youssef SH, Kim S, Khetan R, Afinjuomo F, Song Y, Garg S. The development of 5-fluorouracil biodegradable implants: A comparative study of PCL/PLGA blends. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
3
|
Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions. BIOLOGY 2022; 11:biology11121706. [PMID: 36552216 PMCID: PMC9774464 DOI: 10.3390/biology11121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn2+ ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% wt/wt) as conductive filler to produce an electrically conductive surface. The nanocomposites' surface electrical conductivity presented values in the range of human skeletal muscle tissue. The biological evaluation of the cell environment created by the combination of the conductive surface and extracellular Zn2+ ions showed no cytotoxicity and good cell adhesion (murine C2C12 myoblasts). Amazingly, the combined strategy, cell-material interface with conductive properties and Zn bioactive ions, was found to have a pronounced synergistic effect on myoblast proliferation and the early stages of differentiation. The ratio of differentiated myoblasts cultured on the conductive nanocomposites with extracellular Zn2+ ions added in the differentiation medium (serum-deprived medium) was enhanced by more than 170% over that of non-conductive surfaces (only the polymeric matrix), and more than 120% over both conductive substrates (without extracellular Zn2+ ions) and non-conductive substrates with extracellular Zn2+. This synergistic effect was also found to increase myotube density, myotube area and diameter, and multinucleated myotube formation. MyoD-1 gene expression was also enhanced, indicating the positive effect in the early stages of myogenic differentiation. These results demonstrate the great potential of this combined strategy, which stands outs for its simplicity and robustness, for skeletal muscle tissue engineering applications.
Collapse
|
4
|
Tai CL, Hong WL, Kuo YT, Chang CY, Niu MC, Karupathevar Ponnusamythevar Ochathevar M, Hsu CL, Horng SF, Chao YC. Ultrastable, Deformable, and Stretchable Luminescent Organic-Inorganic Perovskite Nanocrystal-Polymer Composites for 3D Printing and White Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30176-30184. [PMID: 31343151 DOI: 10.1021/acsami.9b06248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic-inorganic perovskite nanocrystals with excellent optoelectronic properties have been utilized in various applications, despite their stability issues. The perovskite materials are sensitive to environments such as polar solvents, moisture, and heat. Thus, they are not used for extrusion three-dimensional (3D) printing, as it is usually conducted in the ambient environment and requires heating to liquefy the printed materials. In this work, 11 thermoplastic polymers conventionally used for extrusion 3D printing were investigated to test their capability as protective encapsulation materials for perovskite nanocrystals. Three of them exhibited good protective properties, and one (polycaprolactone, PCL) of these three could be blended with perovskite nanocrystals to form perovskite nanocrystal-PCL composites, which were deformable and stretchable once heated. Because of the low melting point of PCL, the perovskite nanocrystals maintained their optical properties after 3D printing, and the printed objects were still having fluorescent behavior. Moreover, fluorescent micrometer-sized fibers based on the perovskite nanocrystal-PCL composites could also be simply prepared using cotton candy makers. Perovskite nanocrystal-PCL composite films with different emission wavelengths were incorporated with blue light-emitting diodes (LEDs) to realize white LEDs with Commission Internationale de l'Éclairage chromaticity coordinates of (0.33, 0.33).
Collapse
Affiliation(s)
- Ching-Lan Tai
- Department of Physics , Chung Yuan Christian University , Chung-Li , Taiwan 32023 , R.O.C
| | - Wei-Li Hong
- Institute of Electronics Engineering , National Tsing Hua University , Hsinchu , Taiwan 300 , R.O.C
| | - Yi-Tong Kuo
- Department of Physics , Chung Yuan Christian University , Chung-Li , Taiwan 32023 , R.O.C
| | - Che-Yu Chang
- Department of Physics , Chung Yuan Christian University , Chung-Li , Taiwan 32023 , R.O.C
| | - Mu-Chun Niu
- Department of Physics , National Taiwan Normal University , Taipei , Taiwan 11677 , R.O.C
| | | | - Ching-Ling Hsu
- Department of Physics , Chung Yuan Christian University , Chung-Li , Taiwan 32023 , R.O.C
| | - Sheng-Fu Horng
- Institute of Electronics Engineering , National Tsing Hua University , Hsinchu , Taiwan 300 , R.O.C
| | - Yu-Chiang Chao
- Department of Physics , National Taiwan Normal University , Taipei , Taiwan 11677 , R.O.C
| |
Collapse
|
5
|
Koutsoumpis S, Raftopoulos KN, Oguz O, Papadakis CM, Menceloglu YZ, Pissis P. Dynamic glass transition of the rigid amorphous fraction in polyurethane-urea/SiO 2 nanocomposites. SOFT MATTER 2017; 13:4580-4590. [PMID: 28590480 DOI: 10.1039/c7sm00397h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report molecular dynamics in the rigid amorphous fraction (RAF) of the polymer bound at the interfaces with nanoparticles in polymer nanocomposites and calculate the glass transition temperature, Tg, for this bound layer of polymer. We follow the '3-phase-model' for semicrystalline polymers where the polymer matrix consists of the crystalline fraction (CF), the mobile amorphous fraction (MAF) and the RAF. While the amorphous polymer bound by crystallites is completely rigid, neither contributing to the glass transition, nor displaying molecular dynamics, the amorphous polymer bound at the interfaces with filler displays decelerated dynamics, as compared to the bulk polymer. Reports in the literature suggest a discrepancy between Tg values obtained by Differential Scanning Calorimetry (DSC) and by Dielectric Relaxation Spectroscopy (DRS). As a plausible explanation we suggest that DRS results in Tg values taking into account the bound polymer, whereas DSC does not. For this investigation we use semicrystalline polyurethane-urea/SiO2 nanocomposites and employ, next to DSC and DRS, SEM, SAXS and WAXS for morphological characterization. It is our intention to use DRS as a tool for investigating the RAF.
Collapse
Affiliation(s)
- Stefanos Koutsoumpis
- National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece.
| | - Konstantinos N Raftopoulos
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Oguzhan Oguz
- Faculty of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, 34956, Tuzla, Istanbul, Turkey and Sabanci University Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence, Teknopark Istanbul, 34906, Pendik, Istanbul, Turkey
| | - Christine M Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Yusuf Z Menceloglu
- Faculty of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, 34956, Tuzla, Istanbul, Turkey and Sabanci University Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence, Teknopark Istanbul, 34906, Pendik, Istanbul, Turkey
| | - Polycarpos Pissis
- National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece.
| |
Collapse
|
6
|
Biodegradable polyester networks including hydrophilic groups favor BMSCs differentiation and can be eroded by macrophage action. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
|
8
|
Ivirico JLE, Cruz DMG, Monrós MCA, Martínez-Ramos C, Pradas MM. Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1605-1617. [PMID: 22534765 DOI: 10.1007/s10856-012-4649-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/14/2012] [Indexed: 05/31/2023]
Abstract
Copolymer networks from poly(ethylene glycol) methacrylate (PEGMA) and caprolactone 2-(methacryloyloxy) ethyl ester were synthesized and the resulting structure of the copolymer network was characterized by differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, equilibrium water gain and dynamic mechanical analysis, results which were employed to conclude about the network structure of the resulting copolymers. The new material is a random copolymer with a good miscibility and increasing hydrophilicity as the PEGMA content increases in the composition. Physical data suggest an excess free volume and synergistic interactions between the lateral chains of both comonomers. Olfactory ensheathing cells were cultured on the different networks, and cell viability and proliferation were assessed by MTS assay. The copolymers with a 30 wt% of PEGMA showed the best results compared with the other compositions in this respect, indicating the relevance for biological performance of a balance of hydrophilic and hydrophobic functionalities in the polymer chain.
Collapse
Affiliation(s)
- Jorge Luis Escobar Ivirico
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022, Valencia, Spain.
| | | | | | | | | |
Collapse
|