1
|
Pessoni L, Siniscalco D, Boussonnière A, Castanet AS, Billon L, Delorme N. Photo-reversible solid to liquid transition of azobenzene containing polymers: impact of the chemical structure and chain length. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Rahman MU, Xi Y, Li H, Chen F, Liu D, Wei J. Dynamics and Structure Formation of Confined Polymer Thin Films Supported on Solid Substrates. Polymers (Basel) 2021; 13:1621. [PMID: 34067812 PMCID: PMC8155975 DOI: 10.3390/polym13101621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
The stability/instability behavior of polystyrene (PS) films with tunable thickness ranging from higher as-cast to lower residual made on Si substrates with and without native oxide layer was studied in this paper. For further extraction of residual PS thin film (hresi) and to investigate the polymer-substrate interaction, Guiselin's method was used by decomposing the polymer thin films in different solvents. The solvents for removing loosely adsorbed chains and extracting the strongly adsorbed irreversible chains were selected based on their relative desorption energy difference with polymer. The PS thin films rinsed in chloroform with higher polarity than that of toluene showed a higher decrease in the residual film thickness but exhibited earlier growth of holes and dewetting in the film. The un-annealed samples with a higher oxide film thickness showed a higher decrease in the PS residual film thickness. The effective viscosity of PS thin films spin-coated on H-Si substrates increased because of more resistance to flow dynamics due to the stronger polymer-substrate interaction as compared to that of Si-SiOx substrates. By decreasing the film thickness, the overall effective mobility of the film increased and led to the decrease in the effective viscosity, with matching results of the film morphology from atomic force microscopy (AFM). The polymer film maintained low viscosity until a certain period of time, whereupon further annealing occurred, and the formation of holes in the film grew, which ultimately dewetted the film. The residual film decrement, growth of holes in the film, and dewetting of the polymer-confined thin film showed dependence on the effective viscosity, the strength of solvent used, and various involved interactions on the surface of substrates.
Collapse
Affiliation(s)
- Mujib Ur Rahman
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Yonghao Xi
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| | - Haipeng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| | - Fei Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| | - Dongjie Liu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| | - Jinjia Wei
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| |
Collapse
|
4
|
Ishikawa Y, Maruyama S, Matsumoto Y. In situ vacuum ellipsometry approach to investigation of glass transition behavior in ionic liquid thin films. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Li Y, Lin D, Xu J, Zhou X, Zuo B, Tsui OKC, Zhang W, Wang X. Glass transition temperature of single-chain polystyrene particles end-grafted to oxide-coated silicon. J Chem Phys 2020; 152:064904. [PMID: 32061204 DOI: 10.1063/1.5140627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A method based on the PeakForce QNM atomic force microscopic (AFM) adhesion measurement is employed to investigate the glassy dynamics of polystyrene (PS) single-chain particles end-grafted to SiO2-Si substrates with different diameters, D0, of 3.4 nm-8.8 nm and molar masses, Mn, of 8-123 kg/mol. As temperature was increased, the adhesion force, Fad, experienced by the AFM tip on pulling off the single chains after loading demonstrated a stepwise increase at an elevated temperature, which we identified to be Tg based on previous works. Our result shows that Tg of our grafted single chains increases with Mn in a manner consistent with the Fox-Flory equation, but the coefficient quantifying the Mn dependence of Tg is only (36 ± 6)% the value of bulk PS. In addition, the value of Tg in the Mn → ∞ limit is about 25 °C below the bulk Tg but more than 15 °C above that of (untethered) PS nanoparticles with D0 ≈ 100 nm suspended in a solution. Our findings are consistent with Tg of our single chains being dominated by simultaneous effects of the interfaces, which depress Tg, and end-grafting, which enhances Tg. The latter is believed to exert its influence on the glass transition dynamics by a mechanism reliant on chain connectivity and does not vary with chain length.
Collapse
Affiliation(s)
- Yawei Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Decai Lin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianquan Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xianjing Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ophelia K C Tsui
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wei Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
6
|
Begam N, Das A N, Chandran S, Ibrahim M, Padmanabhan V, Sprung M, Basu JK. Nanoparticle-polymer interfacial layer properties tune fragility and dynamic heterogeneity of athermal polymer nanocomposite films. SOFT MATTER 2018; 14:8853-8859. [PMID: 30357240 DOI: 10.1039/c8sm01729h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Enthalpic interactions at the interface between nanoparticles and matrix polymers are known to influence various properties of the resultant polymer nanocomposites (PNC). For athermal PNCs, consisting of grafted nanoparticles embedded in chemically identical polymers, the role and extent of the interface layer (IL) interactions in determining the properties of the nanocomposites are not very clear. Here, we demonstrate the influence of the interfacial layer dynamics on the fragility and dynamical heterogeneity (DH) of athermal and glassy PNCs. The IL properties are altered by changing the grafted to matrix polymer size ratio, f, which in turn changes the extent of matrix chain penetration into the grafted layer, λ. The fragility of PNCs is found to increase monotonically with increasing entropic compatibility, characterised by increasing λ. Contrary to observations in most polymers and glass formers, we observe an anti-correlation between the dependence on IL dynamics of fragility and DH, quantified by the experimentally estimated Kohlrausch-Watts-Williams parameter and the non-Gaussian parameter obtained from simulations.
Collapse
Affiliation(s)
- Nafisa Begam
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ibrahim M, Begam N, Padmanabhan V, Basu JK. Correlation between grafted nanoparticle-matrix polymer interface wettability and slip in polymer nanocomposites. SOFT MATTER 2018; 14:6076-6082. [PMID: 29989129 DOI: 10.1039/c8sm01072b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlling and understanding the flow properties of polymer nanocomposites (PNC) is very important in realising their potential for various applications. In this study we report molecular dynamics simulation studies of slip between a rotating polymer-grafted nanoparticle and the surrounding free linear matrix chains. By varying the interface wettability between the nanoparticle and matrix chains defined by the parameter f, the ratio of the graft to the matrix chain length, or the graft chain density, Σ, we were able to tune the interface slip, δ, significantly. Both f and Σ alter the interface wettability by changing the matrix chain penetration depth, λ, into the graft chain layer. We observed a large value of δ at smaller f or Σ which reduces with an increasing value of the respective parameters. Since interface slip is also likely to affect other properies of PNCs, like viscosity and the glass transition, we suggest that these parameters could become useful tools to control the flow and mechanical properties of PNCs made with grafted nanoparticles.
Collapse
Affiliation(s)
- Mohd Ibrahim
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| | | | | | | |
Collapse
|
8
|
Pradipkanti L, Chowdhury M, Satapathy DK. Stratification and two glass-like thermal transitions in aged polymer films. Phys Chem Chem Phys 2018; 19:29263-29270. [PMID: 29067372 DOI: 10.1039/c7cp05726a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using X-ray reflectivity, spectroscopic ellipsometry and Raman spectroscopy, we have studied the stratified structure and the two glass-like thermal transitions in sufficiently aged glassy polystyrene films. We find that favorable interaction between the solid substrate and the polymer film induces stratification within the film resulting in different densities across the film thickness. Existence of two glass-like thermal transitions (one at 70 °C and the other at 95 °C) is independently confirmed by temperature dependent spectroscopic ellipsometry and Raman spectroscopy measurements. Interestingly, the thermal coefficient of expansion of the polymer film displays anomalous behavior with temperature and is found to have the lowest value over the temperature range 70-95 °C, i.e. between the two observed glass-like thermal transition temperatures.
Collapse
Affiliation(s)
- L Pradipkanti
- Soft Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai - 600036, India.
| | | | | |
Collapse
|
9
|
Chebil MS, Vignaud G, Bal JK, Beuvier T, Delorme N, Grohens Y, Gibaud A. Reversibility in glass transition behavior after erasing stress induced by spin coating process. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Unni AB, Vignaud G, Chapel JP, Giermanska J, Bal JK, Delorme N, Beuvier T, Thomas S, Grohens Y, Gibaud A. Probing the Density Variation of Confined Polymer Thin Films via Simple Model-Independent Nanoparticle Adsorption. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A. Beena Unni
- FRE
CNRS 3744, IRDL, Univ. Bretagne Sud, F-56100 Lorient, France
- International
and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India 686560
| | - G. Vignaud
- FRE
CNRS 3744, IRDL, Univ. Bretagne Sud, F-56100 Lorient, France
| | - J. P. Chapel
- Centre
de Recherche Paul Pascal (CRPP), UPR 8641, CNRS, F-33600 Pessac, France
- Centre de
Recherche Paul Pascal, Université de Bordeaux, F-33600 Pessac, France
| | - J. Giermanska
- Centre
de Recherche Paul Pascal (CRPP), UPR 8641, CNRS, F-33600 Pessac, France
- Centre de
Recherche Paul Pascal, Université de Bordeaux, F-33600 Pessac, France
| | - J. K. Bal
- Centre
for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Saltlake
City, Kolkata 700098, India
| | - N. Delorme
- LUNAM
Université, IMMM, Faculté de Sciences, Université du Maine, UMR 6283 CNRS, 72000 Le Mans, Cedex 9, France
| | - T. Beuvier
- LUNAM
Université, IMMM, Faculté de Sciences, Université du Maine, UMR 6283 CNRS, 72000 Le Mans, Cedex 9, France
| | - S. Thomas
- International
and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India 686560
| | - Y. Grohens
- FRE
CNRS 3744, IRDL, Univ. Bretagne Sud, F-56100 Lorient, France
| | - A. Gibaud
- LUNAM
Université, IMMM, Faculté de Sciences, Université du Maine, UMR 6283 CNRS, 72000 Le Mans, Cedex 9, France
| |
Collapse
|
11
|
Huang P, Zhang L, Yan Q, Guo D, Xie G. Size Dependent Mechanical Properties of Monolayer Densely Arranged Polystyrene Nanospheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13187-13192. [PMID: 27951716 DOI: 10.1021/acs.langmuir.6b03481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In contrast to macroscopic materials, the mechanical properties of polymer nanospheres show fascinating scientific and application values. However, the experimental measurements of individual nanospheres and quantitative analysis of theoretical mechanisms remain less well performed and understood. We provide a highly efficient and accurate method with monolayer densely arranged honeycomb polystyrene (PS) nanospheres for the quantitatively mechanical characterization of individual nanospheres on the basis of atomic force microscopy (AFM) nanoindentation. The efficiency is improved by 1-2 orders, and the accuracy is also enhanced almost by half-order. The elastic modulus measured in the experiments increases with decreasing radius to the smallest nanospheres (25-35 nm in radius). A core-shell model is introduced to predict the size dependent elasticity of PS nanospheres, and the theoretical prediction agrees reasonably well with the experimental results and also shows a peak modulus value.
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
- Sicence and Technology on Surface Physics and Chemistry Laboratory , Mianyang 621908, Sichuan, China
| | - Lijing Zhang
- School of Chemistry, Dalian University of Technology , Dalian 116024, Liaoning, China
| | - Qingfeng Yan
- Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Dan Guo
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Guoxin Xie
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| |
Collapse
|
12
|
Beena Unni A, Vignaud G, Bal JK, Delorme N, Beuvier T, Thomas S, Grohens Y, Gibaud A. Solvent Assisted Rinsing: Stability/Instability of Ultrathin Polymer Residual Layer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A. Beena Unni
- FRE
CNRS 3744, IRDL, Univ. Bretagne Sud, F-56100 Lorient, France
- International
and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560 India
| | - G. Vignaud
- FRE
CNRS 3744, IRDL, Univ. Bretagne Sud, F-56100 Lorient, France
| | - J. K. Bal
- Centre
for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus,
Block JD2, Sector III, Saltlake City, Kolkata 700098, India
| | - N. Delorme
- LUNAM
Université, IMMM, Faculté de Sciences, UMR 6283 CNRS, Université du Maine, Le Mans, Cedex 9, 72000, France
| | - T. Beuvier
- LUNAM
Université, IMMM, Faculté de Sciences, UMR 6283 CNRS, Université du Maine, Le Mans, Cedex 9, 72000, France
| | - S. Thomas
- International
and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560 India
| | - Y. Grohens
- FRE
CNRS 3744, IRDL, Univ. Bretagne Sud, F-56100 Lorient, France
| | - A. Gibaud
- LUNAM
Université, IMMM, Faculté de Sciences, UMR 6283 CNRS, Université du Maine, Le Mans, Cedex 9, 72000, France
| |
Collapse
|