1
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
2
|
Braasch-Turi MM, Koehn JT, Kostenkova K, Van Cleave C, Ives JW, Murakami HA, Crick DC, Crans DC. Electron Transport Lipids Fold Within Membrane-Like Interfaces. Front Chem 2022; 10:827530. [PMID: 35350775 PMCID: PMC8957872 DOI: 10.3389/fchem.2022.827530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Lipoquinones, such as ubiquinones (UQ) and menaquinones (MK), function as essential lipid components of the electron transport system (ETS) by shuttling electrons and protons to facilitate the production of ATP in eukaryotes and prokaryotes. Lipoquinone function in membrane systems has been widely studied, but the exact location and conformation within membranes remains controversial. Lipoquinones, such as Coenzyme Q (UQ-10), are generally depicted simply as "Q" in life science diagrams or in extended conformations in primary literature even though specific conformations are important for function in the ETS. In this study, our goal was to determine the location, orientation, and conformation of UQ-2, a truncated analog of UQ-10, in model membrane systems and to compare our results to previously studied MK-2. Herein, we first carried out a six-step synthesis to yield UQ-2 and then demonstrated that UQ-2 adopts a folded conformation in organic solvents using 1H-1H 2D NOESY and ROESY NMR spectroscopic studies. Similarly, using 1H-1H 2D NOESY NMR spectroscopic studies, UQ-2 was found to adopt a folded, U-shaped conformation within the interface of an AOT reverse micelle model membrane system. UQ-2 was located slightly closer to the surfactant-water interface compared to the more hydrophobic MK-2. In addition, Langmuir monolayer studies determined UQ-2 resided within the monolayer water-phospholipid interface causing expansion, whereas MK-2 was more likely to be compressed out and reside within the phospholipid tails. All together these results support the model that lipoquinones fold regardless of the headgroup structure but that the polarity of the headgroup influences lipoquinone location within the membrane interface. These results have implications regarding the redox activity near the interface as quinone vs. quinol forms may facilitate locomotion of lipoquinones within the membrane. The location, orientation, and conformation of lipoquinones are critical for their function in generating cellular energy within membrane ETS, and the studies described herein shed light on the behavior of lipoquinones within membrane-like environments.
Collapse
Affiliation(s)
| | - Jordan T. Koehn
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Kateryna Kostenkova
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Cameron Van Cleave
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Jacob W. Ives
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Heide A. Murakami
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO, United States
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Van Cleave C, Koehn JT, Pereira CS, Haase AA, Peters BJ, Croslow SW, McLaughlin KG, Werst KR, Goach AL, Crick DC, Arantes GM, Crans DC. Interactions of Truncated Menaquinones in Lipid Monolayers and Bilayers. Int J Mol Sci 2021; 22:9755. [PMID: 34575937 PMCID: PMC8470443 DOI: 10.3390/ijms22189755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/28/2022] Open
Abstract
Menaquinones (MK) are hydrophobic molecules that consist of a naphthoquinone headgroup and a repeating isoprenyl side chain and are cofactors used in bacterial electron transport systems to generate cellular energy. We have previously demonstrated that the folded conformation of truncated MK homologues, MK-1 and MK-2, in both solution and reverse micelle microemulsions depended on environment. There is little information on how MKs associate with phospholipids in a model membrane system and how MKs affect phospholipid organization. In this manuscript, we used a combination of Langmuir monolayer studies and molecular dynamics (MD) simulations to probe these questions on truncated MK homologues, MK-1 through MK-4 within a model membrane. We observed that truncated MKs reside farther away from the interfacial water than ubiquinones are are located closer to the phospholipid tails. We also observed that phospholipid packing does not change at physiological pressure in the presence of truncated MKs, though a difference in phospholipid packing has been observed in the presence of ubiquinones. We found through MD simulations that for truncated MKs, the folded conformation varied, but MKs location and association with the bilayer remained unchanged at physiological conditions regardless of side chain length. Combined, this manuscript provides fundamental information, both experimental and computational, on the location, association, and conformation of truncated MK homologues in model membrane environments relevant to bacterial energy production.
Collapse
Affiliation(s)
- Cameron Van Cleave
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Jordan T. Koehn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Caroline Simões Pereira
- Department of Biochemistry, Institutio de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP, Brazil; (C.S.P.); (G.M.A.)
| | - Allison A. Haase
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Benjamin J. Peters
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Seth W. Croslow
- Department of Chemistry, Monmouth College, Monmouth, IL 61462, USA; (S.W.C.); (K.G.M.); (A.L.G.)
| | - Kyle G. McLaughlin
- Department of Chemistry, Monmouth College, Monmouth, IL 61462, USA; (S.W.C.); (K.G.M.); (A.L.G.)
| | - Katarina R. Werst
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
| | - Audra L. Goach
- Department of Chemistry, Monmouth College, Monmouth, IL 61462, USA; (S.W.C.); (K.G.M.); (A.L.G.)
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Guilherme Menegon Arantes
- Department of Biochemistry, Institutio de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP, Brazil; (C.S.P.); (G.M.A.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (C.V.C.); (J.T.K.); (A.A.H.); (B.J.P.); (K.R.W.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
4
|
Van Cleave C, Murakami HA, Samart N, Koehn JT, Maldonado P, Kreckel HD, Cope EJ, Basile A, Crick DC, Crans DC. Location of menaquinone and menaquinol headgroups in model membranes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Menaquinones are lipoquinones that consist of a headgroup (naphthoquinone, menadione) and an isoprenyl sidechain. They function as electron transporters in prokaryotes such as Mycobacterium tuberculosis. For these studies, we used Langmuir monolayers and microemulsions to investigate how the menaquinone headgroup (menadione) and the menahydroquinone headgroup (menadiol) interact with model membrane interfaces to determine if differences are observed in the location of these headgroups in a membrane. It has been suggested that the differences in the locations are mainly caused by the isoprenyl sidechain rather than the headgroup quinone-to-quinol reduction during electron transport. This study presents evidence that suggests the influence of the headgroup drives the movement of the oxidized quinone and the reduced hydroquinone to different locations within the interface. Utilizing the model membranes of microemulsions and Langmuir monolayers, it is determined whether or not there is a difference in the location of menadione and menadiol within the interface. Based on our findings, we conclude that the menadione and menadiol may reside in different locations within model membranes. It follows that if menaquinone moves within the cell membrane upon menaquinol formation, it is due at least in part, to the differences in the properties of headgroup interactions with the membrane in addition to the isoprenyl sidechain.
Collapse
Affiliation(s)
- Cameron Van Cleave
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Heide A. Murakami
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Nuttaporn Samart
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemistry, Rajabhat Rajanagarindra University, Chachoengsao, Thailand
| | - Jordan T. Koehn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Pablo Maldonado
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Heidi D. Kreckel
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Elana J. Cope
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrea Basile
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Eriksson EK, Edwards K, Grad P, Gedda L, Agmo Hernández V. Osmoprotective effect of ubiquinone in lipid vesicles modelling the E. coli plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1388-1396. [DOI: 10.1016/j.bbamem.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/21/2023]
|
6
|
Hajj Chehade M, Pelosi L, Fyfe CD, Loiseau L, Rascalou B, Brugière S, Kazemzadeh K, Vo CDT, Ciccone L, Aussel L, Couté Y, Fontecave M, Barras F, Lombard M, Pierrel F. A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone. Cell Chem Biol 2019; 26:482-492.e7. [PMID: 30686758 DOI: 10.1016/j.chembiol.2018.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Abstract
Ubiquinone (UQ) is a polyprenylated lipid that is conserved from bacteria to humans and is crucial to cellular respiration. How the cell orchestrates the efficient synthesis of UQ, which involves the modification of extremely hydrophobic substrates by multiple sequential enzymes, remains an unresolved issue. Here, we demonstrate that seven Ubi proteins form the Ubi complex, a stable metabolon that catalyzes the last six reactions of the UQ biosynthetic pathway in Escherichia coli. The SCP2 domain of UbiJ forms an extended hydrophobic cavity that binds UQ intermediates inside the 1-MDa Ubi complex. We purify the Ubi complex from cytoplasmic extracts and demonstrate that UQ biosynthesis occurs in this fraction, challenging the current thinking of a membrane-associated biosynthetic process. Collectively, our results document a rare case of stable metabolon and highlight how the supramolecular organization of soluble enzymes allows the modification of hydrophobic substrates in a hydrophilic environment.
Collapse
Affiliation(s)
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Cameron David Fyfe
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Laurent Loiseau
- Aix Marseille Université, CNRS, Laboratoire Chimie Bactérienne, Institut Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, Marseille 13009, France
| | - Bérengère Rascalou
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Sabine Brugière
- Univ. Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | | | - Chau-Duy-Tam Vo
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Lidia Ciccone
- SOLEIL Synchrotron, L'Orme des Merisiers, 91198 Gif-sur-Yvette, France
| | - Laurent Aussel
- Aix Marseille Université, CNRS, Laboratoire Chimie Bactérienne, Institut Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, Marseille 13009, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Frédéric Barras
- Aix Marseille Université, CNRS, Laboratoire Chimie Bactérienne, Institut Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, Marseille 13009, France; SAMe Unit, Department de Microbiologie, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France.
| |
Collapse
|
7
|
Thermodynamic Behaviour of Mixed Films of an Unsaturated and a Saturated Polar Lipid. (Oleic Acid-Stearic Acid and POPC-DPPC). COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2020017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|