1
|
Piskorz T, Perez-Chirinos L, Qiao B, Sasselli IR. Tips and Tricks in the Modeling of Supramolecular Peptide Assemblies. ACS OMEGA 2024; 9:31254-31273. [PMID: 39072142 PMCID: PMC11270692 DOI: 10.1021/acsomega.4c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Supramolecular peptide assemblies (SPAs) hold promise as materials for nanotechnology and biomedicine. Although their investigation often entails adapting experimental techniques from their protein counterparts, SPAs are fundamentally distinct from proteins, posing unique challenges for their study. Computational methods have emerged as indispensable tools for gaining deeper insights into SPA structures at the molecular level, surpassing the limitations of experimental techniques, and as screening tools to reduce the experimental search space. However, computational studies have grappled with issues stemming from the absence of standardized procedures and relevant crystal structures. Fundamental disparities between SPAs and protein simulations, such as the absence of experimentally validated initial structures and the importance of the simulation size, number of molecules, and concentration, have compounded these challenges. Understanding the roles of various parameters and the capabilities of different models and simulation setups remains an ongoing endeavor. In this review, we aim to provide readers with guidance on the parameters to consider when conducting SPA simulations, elucidating their potential impact on outcomes and validity.
Collapse
Affiliation(s)
| | - Laura Perez-Chirinos
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Baofu Qiao
- Department
of Natural Sciences, Baruch College, City
University of New York, New York, New York 10010, United States
| | - Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
2
|
Sasselli IR, Coluzza I. Assessment of the MARTINI 3 Performance for Short Peptide Self-Assembly. J Chem Theory Comput 2024; 20:224-238. [PMID: 38113378 PMCID: PMC10782451 DOI: 10.1021/acs.jctc.3c01015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The coarse-grained MARTINI force field, initially developed for membranes, has proven to be an exceptional tool for investigating supramolecular peptide assemblies. Over the years, the force field underwent refinements to enhance accuracy, enabling, for example, the reproduction of protein-ligand interactions and constant pH behavior. However, these protein-focused improvements seem to have compromised its ability to model short peptide self-assembly. In this study, we assess the performance of MARTINI 3 in reproducing peptide self-assembly using the well-established diphenylalanine (FF) as our test case. Unlike its success in version 2.1, FF does not even exhibit aggregation in version 3. By systematically exploring parameters for the aromatic side chains and charged backbone beads, we established a parameter set that effectively reproduces tube formation. Remarkably, these parameter adjustments also replicate the self-assembly of other di- and tripeptides and coassemblies. Furthermore, our analysis uncovers pivotal insights for enhancing the performance of MARTINI in modeling short peptide self-assembly. Specifically, we identify issues stemming from overestimated hydrophilicity arising from charged termini and disruptions in π-stacking interactions due to insufficient planarity in aromatic groups and a discrepancy in intermolecular distances between this and backbone-backbone interactions. This investigation demonstrates that strategic modifications can harness the advancements offered by MARTINI 3 for the realm of short peptide self-assembly.
Collapse
Affiliation(s)
- Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research
and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Ivan Coluzza
- Ikerbasque,
Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
3
|
Sasselli IR, Syrgiannis Z, Sather NA, Palmer LC, Stupp SI. Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments. J Phys Chem B 2022; 126:650-659. [PMID: 35029997 DOI: 10.1021/acs.jpcb.1c09258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many peptides are able to self-assemble into one-dimensional (1D) nanostructures, such as cylindrical fibers or ribbons of variable widths, but the relationship between the morphology of 1D objects and their molecular structure is not well understood. Here, we use coarse-grained molecular dynamics (CG-MD) simulations to study the nanostructures formed by self-assembly of different peptide amphiphiles (PAs). The results show that ribbons are hierarchical superstructures formed by laterally assembled cylindrical fibers. Simulations starting from bilayer structures demonstrate the formation of filaments, whereas other simulations starting from filaments indicate varying degrees of interaction among them depending on chemical structure. These interactions are verified by observations using atomic force microscopy of the various systems. The interfilament interactions are predicted to be strongest in supramolecular assemblies that display hydrophilic groups on their surfaces, while those with hydrophobic ones are predicted to interact more weakly as confirmed by viscosity measurements. The simulations also suggest that peptide amphiphiles with hydrophobic termini bend to reduce their interfacial energy with water, which may explain why these systems do not collapse into superstructures of bundled filaments. The simulations suggest that future experiments will need to address mechanistic questions about the self-assembly of these systems into hierarchical structures, namely, the preformation of interactive filaments vs equilibration of large assemblies into superstructures.
Collapse
Affiliation(s)
- Ivan R Sasselli
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas A Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 N St. Clair, Chicago, Illinois 60611, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|