1
|
Krüger T, Maryshev I, Frey E. Hierarchical defect-induced condensation in active nematics. SOFT MATTER 2023; 19:8954-8964. [PMID: 37971530 DOI: 10.1039/d3sm00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Topological defects play a central role in the formation and organization of various biological systems. Historically, such nonequilibrium defects have been mainly studied in the context of homogeneous active nematics. Phase-separated systems, in turn, are known to form dense and dynamic nematic bands, but typically lack topological defects. In this paper, we use agent-based simulations of weakly aligning, self-propelled polymers and demonstrate that contrary to the existing paradigm phase-separated active nematics form -1/2 defects. Moreover, these defects, emerging due to interactions among dense nematic bands, constitute a novel second-order collective state. We investigate the morphology of defects in detail and find that their cores correspond to a strong increase in density, associated with a condensation of nematic fluxes. Unlike their analogs in homogeneous systems, such condensed defects form and decay in a different way and do not involve positively charged partners. We additionally observe and characterize lateral arc-like structures that separate from a band's bulk and move in transverse direction. We show that the key control parameters defining the route from stable bands to the coexistence of dynamic lanes and defects are the total density of particles and their path persistence length. We introduce a hydrodynamic theory that qualitatively recapitulates all the main features of the agent-based model, and use it to show that the emergence of both defects and arcs can be attributed to the same anisotropic active fluxes. Finally, we present a way to artificially engineer and position defects, and speculate about experimental verification of the provided model.
Collapse
Affiliation(s)
- Timo Krüger
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
| | - Ivan Maryshev
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, 80539 Munich, Germany
| |
Collapse
|
2
|
Dinelli A, O'Byrne J, Curatolo A, Zhao Y, Sollich P, Tailleur J. Non-reciprocity across scales in active mixtures. Nat Commun 2023; 14:7035. [PMID: 37923724 PMCID: PMC10624904 DOI: 10.1038/s41467-023-42713-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
In active matter, particles typically experience mediated interactions, which are not constrained by Newton's third law and are therefore generically non-reciprocal. Non-reciprocity leads to a rich set of emerging behaviors that are hard to account for starting from the microscopic scale, due to the absence of a generic theoretical framework out of equilibrium. Here we consider bacterial mixtures that interact via mediated, non-reciprocal interactions (NRI) like quorum-sensing and chemotaxis. By explicitly relating microscopic and macroscopic dynamics, we show that, under conditions that we derive explicitly, non-reciprocity may fade upon coarse-graining, leading to large-scale equilibrium descriptions. In turn, this allows us to account quantitatively, and without fitting parameters, for the rich behaviors observed in microscopic simulations including phase separation, demixing, and multi-phase coexistence. We also derive the condition under which non-reciprocity survives coarse-graining, leading to a wealth of dynamical patterns. Again, our analytical approach allows us to predict the phase diagram of the system starting from its microscopic description. All in all, our work demonstrates that the fate of non-reciprocity across scales is a subtle and important question.
Collapse
Affiliation(s)
- Alberto Dinelli
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France
| | - Jérémy O'Byrne
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France
- Department of Applied Maths and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge, CB3 0WA, UK
| | - Agnese Curatolo
- John A. Paulson School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Yongfeng Zhao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, China
| | - Peter Sollich
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37 077, Göttingen, Germany
- Department of Mathematics, King's College London, London, WC2R 2LS, UK
| | - Julien Tailleur
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France.
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Martínez-Calvo A, Wingreen NS, Datta SS. Pattern formation by bacteria-phage interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558479. [PMID: 37786699 PMCID: PMC10541591 DOI: 10.1101/2023.09.19.558479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The interactions between bacteria and phages-viruses that infect bacteria-play critical roles in agriculture, ecology, and medicine; however, how these interactions influence the spatial organization of both bacteria and phages remain largely unexplored. Here, we address this gap in knowledge by developing a theoretical model of motile, proliferating bacteria that aggregate via motility-induced phase separation (MIPS) and encounter phage that infect and lyse the cells. We find that the non-reciprocal predator-prey interactions between phage and bacteria strongly alter spatial organization, in some cases giving rise to a rich array of finite-scale stationary and dynamic patterns in which bacteria and phage coexist. We establish principles describing the onset and characteristics of these diverse behaviors, thereby helping to provide a biophysical basis for understanding pattern formation in bacteria-phage systems, as well as in a broader range of active and living systems with similar predator-prey or other non-reciprocal interactions.
Collapse
|
4
|
Formation of dissipative structures in microscopic models of mixtures with species interconversion. Proc Natl Acad Sci U S A 2023; 120:e2215012120. [PMID: 36580588 PMCID: PMC9910485 DOI: 10.1073/pnas.2215012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The separation of substances into different phases is ubiquitous in nature and important scientifically and technologically. This phenomenon may become drastically different if the species involved, whether molecules or supramolecular assemblies, interconvert. In the presence of an external force large enough to overcome energetic differences between the interconvertible species (forced interconversion), the two alternative species will be present in equal amounts, and the striking phenomenon of steady-state, restricted phase separation into mesoscales is observed. Such microphase separation is one of the simplest examples of dissipative structures in condensed matter. In this work, we investigate the formation of such mesoscale steady-state structures through Monte Carlo and molecular dynamics simulations of three physically distinct microscopic models of binary mixtures that exhibit both equilibrium (natural) interconversion and a nonequilibrium source of forced interconversion. We show that this source can be introduced through an internal imbalance of intermolecular forces or an external flux of energy that promotes molecular interconversion, possible manifestations of which could include the internal nonequilibrium environment of living cells or a flux of photons. The main trends and observations from the simulations are well captured by a nonequilibrium thermodynamic theory of phase transitions affected by interconversion. We show how a nonequilibrium bicontinuous microemulsion or a spatially modulated state may be generated depending on the interplay between diffusion, natural interconversion, and forced interconversion.
Collapse
|