1
|
Beyer D, Holm C. Unexpected Two-Stage Swelling of Weak Polyelectrolyte Brushes with Divalent Counterions. ACS Macro Lett 2024; 13:1185-1191. [PMID: 39173189 DOI: 10.1021/acsmacrolett.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We use particle-based, coarse-grained simulations to study the influence of divalent counterions on a weak polyelectrolyte brush. Our simulations show a profound influence of even small concentrations of divalent salt on the titration behavior of the brush, which is shown to be a combined effect of electrostatic interactions and the Donnan effect. Furthermore, we examine the partitioning of mono- and divalent counterions into the brush. We demonstrate the preferred uptake of divalent ions by the brush, which is further enhanced by electrostatic correlation effects. Finally, our simulations reveal a hitherto unobserved two-stage swelling of the brush as a function of the pH in the presence of divalent salt. This phenomenon arises as a consequence of charge regulation and ion partitioning.
Collapse
Affiliation(s)
- David Beyer
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
2
|
Beyer D, Torres PB, Pineda SP, Narambuena CF, Grad JN, Košovan P, Blanco PM. pyMBE: The Python-based molecule builder for ESPResSo. J Chem Phys 2024; 161:022502. [PMID: 38995083 DOI: 10.1063/5.0216389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
We present the Python-based Molecule Builder for ESPResSo (pyMBE), an open source software application to design custom coarse-grained (CG) models, as well as pre-defined models of polyelectrolytes, peptides, and globular proteins in the Extensible Simulation Package for Research on Soft Matter (ESPResSo). The Python interface of ESPResSo offers a flexible framework, capable of building custom CG models from scratch. As a downside, building CG models from scratch is prone to mistakes, especially for newcomers in the field of CG modeling, or for molecules with complex architectures. The pyMBE module builds CG models in ESPResSo using a hierarchical bottom-up approach, providing a robust tool to automate the setup of CG models and helping new users prevent common mistakes. ESPResSo features the constant pH (cpH) and grand-reaction (G-RxMC) methods, which have been designed to study chemical reaction equilibria in macromolecular systems with many reactive species. However, setting up these methods for systems, which contain several types of reactive groups, is an error-prone task, especially for beginners. The pyMBE module enables the automatic setup of cpH and G-RxMC simulations in ESPResSo, lowering the barrier for newcomers and opening the door to investigate complex systems not studied with these methods yet. To demonstrate some of the applications of pyMBE, we showcase several case studies where we successfully reproduce previously published simulations of charge-regulating peptides and globular proteins in bulk solution and weak polyelectrolytes in dialysis. The pyMBE module is publicly available as a GitHub repository (https://github.com/pyMBE-dev/pyMBE), which includes its source code and various sample and test scripts, including the ones that we used to generate the data presented in this article.
Collapse
Affiliation(s)
- David Beyer
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Paola B Torres
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET and Facultad Regional San Rafael, Universidad Tecnológica Nacional, 5600 San Rafael, Argentina
| | - Sebastian P Pineda
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Claudio F Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos. Infap-CONICET and Facultad Regional San Rafael, Universidad Tecnológica Nacional, 5600 San Rafael, Argentina
| | - Jean-Noël Grad
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Department of Physics, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Ishraaq R, Das S. All-atom molecular dynamics simulations of polymer and polyelectrolyte brushes. Chem Commun (Camb) 2024; 60:6093-6129. [PMID: 38819435 DOI: 10.1039/d4cc01557f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Densely grafted polymer and polyelectrolyte (PE) brushes, owing to their significant abilities to functionalize surfaces for a plethora of applications in sensing, diagnostics, current rectification, surface wettability modification, drug delivery, and oil recovery, have attracted significant attention over the past several decades. Unfortunately, most of the attention has primarily focused on understanding the properties of the grafted polymer and the PE chains with little attention devoted to studying the behavior of the brush-supported ions (counterions needed to screen the PE chains) and water molecules. Over the past few years, our group has been at the forefront of addressing this gap: we have employed all-atom molecular dynamics (MD) simulations for studying a wide variety of polymer and PE brush systems with specific attention to unraveling the properties and behavior of the brush-supported water molecules and ions. Our findings have revealed some of the most fascinating properties of such brush-supported ions and water molecules, including the most remarkable control of nanofluidic transport afforded by the specific ion and water responses induced by the PE brushes grafted on the inner walls of the nanochannel. This feature article aims to summarize some of our key contributions associated with such atomistic simulations of polymer and PE brushes and brush-supported water molecules and counterions.
Collapse
Affiliation(s)
- Raashiq Ishraaq
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Jing G, Qiu G, Xu X, Zhao S. Boosting Salinity Energy Extraction Efficiency in Capacitive Mixing by Polyelectrolyte Surface Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8162-8169. [PMID: 38578051 DOI: 10.1021/acs.langmuir.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The extraction of salinity gradient energy in the capacitive mixing (CapMix) technique can be enhanced by using polyelectrolyte-coated electrodes. The micromechanism of polyelectrolyte (PE) coating enhancing the salinity energy extraction is studied by using a statistical thermodynamic theory. When PE takes same charge sign as the coated electrodes, the extraction efficiency can be boosted owing to the enhanced response of electrical double layer (EDL) to external cell voltage (V0). For the optimal case studied, the extraction efficiency was boosted from 0.25 to 1.25% by PE coatings. Owing to counterion adsorption and the enhanced response of EDL, the extraction energy density presented a local maximum at V0 = 0, which is higher than another local maximum value when V0 ≠ 0. This provides important guidance on the two approaches of CapMix in terms of capacitive Donnan potential (CDP, V0 = 0) and capacitive double-layer expansion (CDLE, V0 ≠ 0). Under the effects of PE coating, the extraction efficiency by CDLE can be improved to about 11% by CDP for the optimal studied case. The synergistic effect of grafting conditions can significantly elevate the energy density and extraction efficiency of the CDP process.
Collapse
Affiliation(s)
- Gang Jing
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Genlong Qiu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Yokokura TJ, Duan C, Ding EA, Kumar S, Wang R. Effects of Ionic Strength on the Morphology, Scattering, and Mechanical Response of Neurofilament-Derived Protein Brushes. Biomacromolecules 2024; 25:328-337. [PMID: 38052005 PMCID: PMC10872360 DOI: 10.1021/acs.biomac.3c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Protein brushes not only play a key role in the functionality of neurofilaments but also have wide applications in biomedical materials. Here, we investigate the effect of ionic strength on the morphology of protein brushes using continuous-space self-consistent field theory. A coarse-grained multiblock charged macromolecular model is developed to capture the chemical identity of amino acid sequences. For neurofilament heavy (NFH) brushes at pH 2.4, we predict three morphological regimes: swollen brushes, condensed brushes, and coexisting brushes, which consist of both a dense inner layer and a diffuse outer layer. The brush height predicted by our theory is in good agreement with the experimental data for a wide range of ionic strengths. The dramatic height decrease is a result of the electrostatic screening-induced transition from the overlapping state to the isolated state of the coexisting brushes. We also studied the evolution of the scattering and mechanical responses accompanying the morphological change. The oscillation in the reflectivity spectra characterizes the existence and microstructure of the inner condensed layer, whereas the shoulder in the force spectra signifies a swollen morphology.
Collapse
Affiliation(s)
- Takashi J Yokokura
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chao Duan
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|