1
|
Kang Y, Zhao J, Zhao Y, Zhao Z, Dong Y, Zhang M, Yin G, Tan S. High-order brain network feature extraction and classification method of first-episode schizophrenia: an EEG study. Front Hum Neurosci 2024; 18:1452197. [PMID: 39507061 PMCID: PMC11537920 DOI: 10.3389/fnhum.2024.1452197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction A multimodal persistent topological feature extraction and classification method is proposed to enhance the recognition accuracy of first-episode schizophrenia patients. This approach addresses the limitations of traditional higher-order brain network analyses that rely on single persistent features (e.g., persistent images). Methods The study utilized resting-state EEG data from 198 subjects recruited at Huilongguan Hospital in Beijing, comprising 102 males and 96 females, with a mean age of 30 years and mean education of 14 years. Persistent topological features were extracted using adaptive thresholding during persistent homology (PH) filtrations. The distribution of these features was visualized through heatmaps and persistence entropies, while the generation process was elucidated using Betti curves and persistence landscapes. Results The classification performance of the multimodal persistent topological features was assessed using various machine learning classifiers. The classifier yielding the highest performance was selected for comparison with traditional brain network features derived from graph theory and single persistent topological features. The results revealed significant topological changes in first-episode schizophrenia patients throughout the persistent homology filtering compared to healthy subjects. The univariate feature selection algorithm achieved a classification accuracy of 94.6% with a combination of attributes meeting the criterion of AC ≥ 0.6. Discussion The proposed method demonstrates clinical significance for the early identification and diagnosis of first-episode schizophrenia patients, offering a new research perspective for constructing higher-order functional connectivity networks and extracting topological structure features.
Collapse
Affiliation(s)
- Yanxia Kang
- Clinical Department, Beijing Huilongguan Hospital, Beijing, China
| | - Jianghao Zhao
- Laboratory of Brain Science and Intelligent Information Processing, School of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Yanli Zhao
- Psychiatry Research Center, Beijing Huilongguan Hospital, Bejing, China
| | - Zilong Zhao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Yuan Dong
- Laboratory of Brain Science and Intelligent Information Processing, School of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Manjie Zhang
- Laboratory of Brain Science and Intelligent Information Processing, School of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Guimei Yin
- Laboratory of Brain Science and Intelligent Information Processing, School of Computer Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Bejing, China
| |
Collapse
|
2
|
Adelson RP, Garikipati A, Maharjan J, Ciobanu M, Barnes G, Singh NP, Dinenno FA, Mao Q, Das R. Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer's Disease. Diagnostics (Basel) 2023; 14:13. [PMID: 38201322 PMCID: PMC10795823 DOI: 10.3390/diagnostics14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Mild cognitive impairment (MCI) is cognitive decline that can indicate future risk of Alzheimer's disease (AD). We developed and validated a machine learning algorithm (MLA), based on a gradient-boosted tree ensemble method, to analyze phenotypic data for individuals 55-88 years old (n = 493) diagnosed with MCI. Data were analyzed within multiple prediction windows and averaged to predict progression to AD within 24-48 months. The MLA outperformed the mini-mental state examination (MMSE) and three comparison models at all prediction windows on most metrics. Exceptions include sensitivity at 18 months (MLA and MMSE each achieved 0.600); and sensitivity at 30 and 42 months (MMSE marginally better). For all prediction windows, the MLA achieved AUROC ≥ 0.857 and NPV ≥ 0.800. With averaged data for the 24-48-month lookahead timeframe, the MLA outperformed MMSE on all metrics. This study demonstrates that machine learning may provide a more accurate risk assessment than the standard of care. This may facilitate care coordination, decrease healthcare expenditures, and maintain quality of life for patients at risk of progressing from MCI to AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingqing Mao
- Montera, Inc. dba Forta, 548 Market St, PMB 89605, San Francisco, CA 94104-5401, USA; (R.P.A.); (A.G.); (J.M.); (M.C.); (G.B.); (N.P.S.); (F.A.D.); (R.D.)
| | | |
Collapse
|
3
|
Scheijbeler EP, de Haan W, Stam CJ, Twisk JWR, Gouw AA. Longitudinal resting-state EEG in amyloid-positive patients along the Alzheimer's disease continuum: considerations for clinical trials. Alzheimers Res Ther 2023; 15:182. [PMID: 37858173 PMCID: PMC10585755 DOI: 10.1186/s13195-023-01327-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND To enable successful inclusion of electroencephalography (EEG) outcome measures in Alzheimer's disease (AD) clinical trials, we retrospectively mapped the progression of resting-state EEG measures over time in amyloid-positive patients with mild cognitive impairment (MCI) or dementia due to AD. METHODS Resting-state 21-channel EEG was recorded in 148 amyloid-positive AD patients (MCI, n = 88; dementia due to AD, n = 60). Two or more EEG recordings were available for all subjects. We computed whole-brain and regional relative power (i.e., theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz)), peak frequency, signal variability (i.e., theta permutation entropy), and functional connectivity values (i.e., alpha and beta corrected amplitude envelope correlation, theta phase lag index, weighted symbolic mutual information, inverted joint permutation entropy). Whole-group linear mixed effects models were used to model the development of EEG measures over time. Group-wise analysis was performed to investigate potential differences in change trajectories between the MCI and dementia subgroups. Finally, we estimated the minimum sample size required to detect different treatment effects (i.e., 50% less deterioration, stabilization, or 50% improvement) on the development of EEG measures over time, in hypothetical clinical trials of 1- or 2-year duration. RESULTS Whole-group analysis revealed significant regional and global oscillatory slowing over time (i.e., increased relative theta power, decreased beta power), with strongest effects for temporal and parieto-occipital regions. Disease severity at baseline influenced the EEG measures' rates of change, with fastest deterioration reported in MCI patients. Only AD dementia patients displayed a significant decrease of the parieto-occipital peak frequency and theta signal variability over time. We estimate that 2-year trials, focusing on amyloid-positive MCI patients, require 36 subjects per arm (2 arms, 1:1 randomization, 80% power) to detect a stabilizing treatment effect on temporal relative theta power. CONCLUSIONS Resting-state EEG measures could facilitate early detection of treatment effects on neuronal function in AD patients. Their sensitivity depends on the region-of-interest and disease severity of the study population. Conventional spectral measures, particularly recorded from temporal regions, present sensitive AD treatment monitoring markers.
Collapse
Affiliation(s)
- Elliz P Scheijbeler
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands.
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands.
| | - Willem de Haan
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Alida A Gouw
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
4
|
Formica C, Bonanno L, Giambò FM, Maresca G, Latella D, Marra A, Cucinotta F, Bonanno C, Lombardo M, Tomarchio O, Quartarone A, Marino S, Calabrò RS, Lo Buono V. Paving the Way for Predicting the Progression of Cognitive Decline: The Potential Role of Machine Learning Algorithms in the Clinical Management of Neurodegenerative Disorders. J Pers Med 2023; 13:1386. [PMID: 37763152 PMCID: PMC10533011 DOI: 10.3390/jpm13091386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disorder. The prodromal phase of AD is mild cognitive impairment (MCI). The capacity to predict the transitional phase from MCI to AD represents a challenge for the scientific community. The adoption of artificial intelligence (AI) is useful for diagnostic, predictive analysis starting from the clinical epidemiology of neurodegenerative disorders. We propose a Machine Learning Model (MLM) where the algorithms were trained on a set of neuropsychological, neurophysiological, and clinical data to predict the diagnosis of cognitive decline in both MCI and AD patients. METHODS We built a dataset with clinical and neuropsychological data of 4848 patients, of which 2156 had a diagnosis of AD, and 2684 of MCI, for the Machine Learning Model, and 60 patients were enrolled for the test dataset. We trained an ML algorithm using RoboMate software based on the training dataset, and then calculated its accuracy using the test dataset. RESULTS The Receiver Operating Characteristic (ROC) analysis revealed that diagnostic accuracy was 86%, with an appropriate cutoff value of 1.5; sensitivity was 72%; and specificity reached a value of 91% for clinical data prediction with MMSE. CONCLUSION This method may support clinicians to provide a second opinion concerning high prognostic power in the progression of cognitive impairment. The MLM used in this study is based on big data that were confirmed in enrolled patients and given a credibility about the presence of determinant risk factors also supported by a cognitive test score.
Collapse
Affiliation(s)
- Caterina Formica
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Lilla Bonanno
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Fabio Mauro Giambò
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Giuseppa Maresca
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Desiree Latella
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Angela Marra
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Fabio Cucinotta
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Carmen Bonanno
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | | | - Orazio Tomarchio
- Department of Electrical Engineering, Electronics and Computer Science, University of Catania, 95131 Catania, Italy;
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| | - Viviana Lo Buono
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.F.); (L.B.); (F.M.G.); (G.M.); (A.M.); (F.C.); (C.B.); (A.Q.); (S.M.); (R.S.C.); (V.L.B.)
| |
Collapse
|
5
|
Ma Y, Qian J, Gu Q, Yi W, Yan W, Yuan J, Wang J. Network Analysis of Depression Using Magnetoencephalogram Based on Polynomial Kernel Granger Causality. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1330. [PMID: 37761629 PMCID: PMC10529343 DOI: 10.3390/e25091330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Depression is a psychiatric disorder characterized by anxiety, pessimism, and suicidal tendencies, which has serious impact on human's life. In this paper, we use Granger causality index based on polynomial kernel as network node connectivity coefficient to construct brain networks from the magnetoencephalogram (MEG) of 5 depressed patients and 11 healthy individuals under positive, neutral, and negative emotional stimuli, respectively. We found that depressed patients had more information exchange between the frontal and occipital regions compared to healthy individuals and less causal connections in the parietal and central regions. We further analyzed the topological properties of the network revealed and found that depressed patients had higher average degrees under negative stimuli (p = 0.008) and lower average clustering coefficients than healthy individuals (p = 0.034). When comparing the average degree and average clustering coefficient of the same sample under different emotional stimuli, we found that depressed patients had a higher average degree and average clustering coefficient under negative stimuli than neutral and positive stimuli. We also found that the characteristic path lengths of patients under negative and neutral stimuli significantly deviated from small-world network. Our results suggest that the analysis of polynomial kernel Granger causality brain networks can effectively characterize the pathology of depression.
Collapse
Affiliation(s)
- Yijia Ma
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jing Qian
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qizhang Gu
- School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wanyi Yi
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wei Yan
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jianxuan Yuan
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jun Wang
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
6
|
Rutkowski TM, Abe MS, Komendzinski T, Sugimoto H, Narebski S, Otake-Matsuura M. Machine learning approach for early onset dementia neurobiomarker using EEG network topology features. Front Hum Neurosci 2023; 17:1155194. [PMID: 37397858 PMCID: PMC10311997 DOI: 10.3389/fnhum.2023.1155194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Modern neurotechnology research employing state-of-the-art machine learning algorithms within the so-called "AI for social good" domain contributes to improving the well-being of individuals with a disability. Using digital health technologies, home-based self-diagnostics, or cognitive decline managing approaches with neuro-biomarker feedback may be helpful for older adults to remain independent and improve their wellbeing. We report research results on early-onset dementia neuro-biomarkers to scrutinize cognitive-behavioral intervention management and digital non-pharmacological therapies. Methods We present an empirical task in the EEG-based passive brain-computer interface application framework to assess working memory decline for forecasting a mild cognitive impairment. The EEG responses are analyzed in a framework of a network neuroscience technique applied to EEG time series for evaluation and to confirm the initial hypothesis of possible ML application modeling mild cognitive impairment prediction. Results We report findings from a pilot study group in Poland for a cognitive decline prediction. We utilize two emotional working memory tasks by analyzing EEG responses to facial emotions reproduced in short videos. A reminiscent interior image oddball task is also employed to validate the proposed methodology further. Discussion The proposed three experimental tasks in the current pilot study showcase the critical utilization of artificial intelligence for early-onset dementia prognosis in older adults.
Collapse
Affiliation(s)
- Tomasz M. Rutkowski
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- The University of Tokyo, Tokyo, Japan
- Nicolaus Copernicus University, Toruń, Poland
| | - Masato S. Abe
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Doshisha University, Kyoto, Japan
| | | | - Hikaru Sugimoto
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | | | | |
Collapse
|
7
|
Yang Z, Chen Y, Hou X, Xu Y, Bai F. Topologically convergent and divergent large scale complex networks among Alzheimer's disease spectrum patients: A systematic review. Heliyon 2023; 9:e15389. [PMID: 37101638 PMCID: PMC10123263 DOI: 10.1016/j.heliyon.2023.e15389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Alzheimer's disease (AD) is associated with disruption at the level of a large-scale complex network. To explore the underlying mechanisms in the progression of AD, graph theory was used to quantitatively analyze the topological properties of structural and functional connections. Although an increasing number of studies have shown altered global and nodal network properties, little is known about the topologically convergent and divergent patterns between structural and functional networks among AD-spectrum patients. In this review, we summarized the topological patterns of the large-scale complex networks using multimodal neuroimaging graph theory analysis in AD spectrum patients. Convergent deficits in the connectivity characteristics were primarily in the default mode network (DMN) itself both in the structural and functional networks, while a divergent changes in the neighboring regions of the DMN were also observed between the patient groups. Together, the application of graph theory to large-scale complex brain networks provides quantitative insights into topological principles of brain network organization, which may lead to increasing attention in identifying the underlying neuroimaging pathological changes and predicting the progression of AD.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Geriatric Medicine Center, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence to: 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
8
|
Cui G, Li X, Touyama H. Emotion recognition based on group phase locking value using convolutional neural network. Sci Rep 2023; 13:3769. [PMID: 36882447 PMCID: PMC9992377 DOI: 10.1038/s41598-023-30458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Electroencephalography (EEG)-based emotion recognition is an important technology for human-computer interactions. In the field of neuromarketing, emotion recognition based on group EEG can be used to analyze the emotional states of multiple users. Previous emotion recognition experiments have been based on individual EEGs; therefore, it is difficult to use them for estimating the emotional states of multiple users. The purpose of this study is to find a data processing method that can improve the efficiency of emotion recognition. In this study, the DEAP dataset was used, which comprises EEG signals of 32 participants that were recorded as they watched 40 videos with different emotional themes. This study compared emotion recognition accuracy based on individual and group EEGs using the proposed convolutional neural network model. Based on this study, we can see that the differences of phase locking value (PLV) exist in different EEG frequency bands when subjects are in different emotional states. The results showed that an emotion recognition accuracy of up to 85% can be obtained for group EEG data by using the proposed model. It means that using group EEG data can effectively improve the efficiency of emotion recognition. Moreover, the significant emotion recognition accuracy for multiple users achieved in this study can contribute to research on handling group human emotional states.
Collapse
Affiliation(s)
- Gaochao Cui
- Graduate School of Engineering, Toyama Prefectural University, Imizu, 9390398, Japan.
| | - Xueyuan Li
- Graduate School of Engineering, Toyama Prefectural University, Imizu, 9390398, Japan
| | - Hideaki Touyama
- Graduate School of Engineering, Toyama Prefectural University, Imizu, 9390398, Japan
| |
Collapse
|
9
|
Morabito FC, Ieracitano C, Mammone N. An explainable Artificial Intelligence approach to study MCI to AD conversion via HD-EEG processing. Clin EEG Neurosci 2023; 54:51-60. [PMID: 34889152 DOI: 10.1177/15500594211063662] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An explainable Artificial Intelligence (xAI) approach is proposed to longitudinally monitor subjects affected by Mild Cognitive Impairment (MCI) by using high-density electroencephalography (HD-EEG). To this end, a group of MCI patients was enrolled at IRCCS Centro Neurolesi Bonino Pulejo of Messina (Italy) within a follow-up protocol that included two evaluations steps: T0 (first evaluation) and T1 (three months later). At T1, four MCI patients converted to Alzheimer's Disease (AD) and were included in the analysis as the goal of this work was to use xAI to detect individual changes in EEGs possibly related to the degeneration from MCI to AD. The proposed methodology consists in mapping segments of HD-EEG into channel-frequency maps by means of the power spectral density. Such maps are used as input to a Convolutional Neural Network (CNN), trained to label the maps as "T0" (MCI state) or "T1" (AD state). Experimental results reported high intra-subject classification performance (accuracy rate up to 98.97% (95% confidence interval: 98.68-99.26)). Subsequently, the explainability of the proposed CNN is explored via a Grad-CAM approach. The procedure detected which EEG-channels (i.e., head region) and range of frequencies (i.e., sub-bands) were more active in the progression to AD. The xAI analysis showed that the main information is included in the delta sub-band and that, limited to the analyzed dataset, the highest relevant areas are: the left-temporal and central-frontal lobe for Sb01, the parietal lobe for Sb02, the left-frontal lobe for Sb03 and the left-frontotemporal region for Sb04.
Collapse
Affiliation(s)
- Francesco Carlo Morabito
- DICEAM, 19009University Mediterranea of Reggio Calabria, Via Graziella Feo di Vito, 89124, Reggio Calabria, Italy
| | - Cosimo Ieracitano
- DICEAM, 19009University Mediterranea of Reggio Calabria, Via Graziella Feo di Vito, 89124, Reggio Calabria, Italy
| | - Nadia Mammone
- DICEAM, 19009University Mediterranea of Reggio Calabria, Via Graziella Feo di Vito, 89124, Reggio Calabria, Italy
| |
Collapse
|
10
|
Zhu J, Wei S, Xie X, Yang C, Li Y, Li X, Hu B. Content-based multiple evidence fusion on EEG and eye movements for mild depression recognition. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107100. [PMID: 36162244 DOI: 10.1016/j.cmpb.2022.107100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Depression is a serious neurological disorder that has become a major health problem worldwide. The detection of mild depression is important for the diagnosis of depression in early stages. This research seeks to find a more accurate fusion model which can be used for mild depression detection using Electroencephalography and eye movement data. METHODS This study proposes a content-based multiple evidence fusion (CBMEF) method, which fuses EEG and eye movement data at decision level. The method mainly includes two modules, the classification performance matrix module and the dual-weight fusion module. The classification performance matrices of different modalities are estimated by Bayesian rule based on confusion matrix and Mahalanobis distance, and the matrices were used to correct the classification results. Then the relative conflict degree of each modality is calculated, and different weights are assigned to the above modalities at the decision fusion layer according to this conflict degree. RESULTS The experimental results show that the proposed method outperforms other fusion methods as well as the single modality results. The highest accuracies achieved 91.12%, and sensitivity, specificity and precision were 89.20%, 93.03%, 92.76%. CONCLUSIONS The promising results showed the potential of the proposed approach for the detection of mild depression. The idea of introducing the classification performance matrix and the dual-weight model to multimodal biosignals fusion casts a new light on the researches of depression recognition.
Collapse
Affiliation(s)
- Jing Zhu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Shiqing Wei
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xiannian Xie
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Changlin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yizhou Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China; Shandong Academy Of Intelligent Computing Technoloy, Shandong, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, China; School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
11
|
Saravanakumar S, Saravanan T. An effective convolutional neural network-based stacked long short-term memory approach for automated Alzheimer’s disease prediction. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In today’s world, Alzheimer’s Disease (AD) is one of the prevalent neurological diseases where early disease prediction can significantly enhance the compatibility of patient treatment. Nevertheless, accurate diagnosis and optimal feature selection play a vital challenge in AD detection. Most of the existing diagnosis systems failed to attain superior prediction accuracy and precision rate. In order to mitigate these constraints, a new efficient Convolutional Neural Network-based Stacked Long Short-Term Memory (CNN-SLSTM) methodology has been proposed in this paper. The key objective of the proposed model is to examine the brain’s condition and evaluate the changes that occur throughout the interracial period. The proposed model includes multi-feature learning and categorization in which the raw Electroencephalography (EEG) data will be passed via the feature extractor to decrease the computing complexity and execution time. Afterward, the SLSTM network is constructed with completely linked layer and activation layers to record the temporal relationship between features and the next stage of AD. The proposed CNN-SLSTM model can be trained using real-time EEG sensor data. The performance results clearly apparent that the proposed model can efficiently predict the AD with superior accuracy of 98.67% and precision of 98.86% when compared with existing state-of-the-art techniques.
Collapse
Affiliation(s)
- S. Saravanakumar
- Department of Computer Science and Engineering, Adithya Institute of Technology, Coimbatore, India
| | - T. Saravanan
- Department of Computer Science and Engineering, St Martins Engineering college Telangana, India
| |
Collapse
|
12
|
Youssef N, Xiao S, Liu M, Lian H, Li R, Chen X, Zhang W, Zheng X, Li Y, Li Y. Functional Brain Networks in Mild Cognitive Impairment Based on Resting Electroencephalography Signals. Front Comput Neurosci 2021; 15:698386. [PMID: 34776913 PMCID: PMC8579961 DOI: 10.3389/fncom.2021.698386] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
The oscillatory patterns of electroencephalography (EEG), during resting states, are informative and helpful in understanding the functional states of brain network and their contribution to behavioral performances. The aim of this study is to characterize the functional brain network alterations in patients with amnestic mild cognitive impairment (aMCI). To this end, rsEEG signals were recorded before and after a cognitive task. Functional connectivity metrics were calculated using debiased weighted phase lag index (DWPLI). Topological features of the functional connectivity network were analyzed using both the classical graph approach and minimum spanning tree (MST) algorithm. Subsequently, the network and connectivity values together with Mini-Mental State Examination cognitive test were used as features to classify the participants. Results showed that: (1) across the pre-task condition, in the theta band, the aMCI group had a significantly lower global mean DWPLI than the control group; the functional connectivity patterns were different in the left hemisphere between two groups; the aMCI group showed significantly higher average clustering coefficient and the remarkably lower global efficiency than the control. (2) Analysis of graph measures under post-task resting state, unveiled that for the percentage change of post-task vs. pre-task in beta EEG, a significant increase in tree hierarchy was observed in aMCI group (2.41%) than in normal control (-3.89%); (3) Furthermore, the classification analysis of combined measures of functional connectivity, brain topology, and MMSE test showed improved accuracy compared to the single method, for which the connectivity patterns and graph metrics were used as separate inputs. The classification accuracy obtained for the case of post-task resting state was 87.2%, while the one achieved under pre-task resting state was found to be 77.7%. Therefore, the functional network alterations in aMCI patients were more prominent during the post-task resting state. This study suggests that the disintegration observed in MCI functional network during the resting states, preceding and following a task, might be possible biomarkers of cognitive dysfunction in aMCI patients.
Collapse
Affiliation(s)
- Nadia Youssef
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Shasha Xiao
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haipeng Lian
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xi Chen
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Xiaoran Zheng
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingjie Li
- School of Communication and Information Engineering, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Analysis of complexity and dynamic functional connectivity based on resting-state EEG in early Parkinson’s disease patients with mild cognitive impairment. Cogn Neurodyn 2021; 16:309-323. [PMID: 35401875 PMCID: PMC8934826 DOI: 10.1007/s11571-021-09722-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/12/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022] Open
Abstract
To explore the abnormal brain activity of early Parkinson's disease with mild cognitive impairment (ePD-MCI) patients, the study analyzed the dynamic fluctuation of electroencephalogram (EEG) signals and the dynamic change of information communication between EEG signals of ePD-MCI patients. In this study, we recorded resting-state EEG signals of 30 ePD-MCI patients and 37 early Parkinson's disease without mild cognitive impairment (ePD-nMCI) patients. First, we analyzed the difference of the complexity of EEG signals between the two groups. And we found that the complexity in the ePD-MCI group was significantly higher than that in the ePD-nMCI group. Then, by analyzing the dynamic functional network (DFN) topology based on the optimal sliding-window, we found that the temporal correlation coefficients of ePD-MCI patients were lower in the delta and theta bands than those in the ePD-nMCI patients. The temporal characteristic path length of ePD-MCI patients in the alpha band was higher than that of ePD-nMCI patients. In the theta and alpha bands, the temporal small world degrees of ePD-MCI patients were lower than that of patients with ePD-nMCI. In addition, the functional connectivity strength of ePD-MCI patients affected by cognitive impairment was weaker than that of ePD-nMCI patients, and the stability of dynamic functional connectivity network was decreased. This finding may serve as a biomarker to identify ePD-MCI and contribute to the early intervention treatment of ePD-MCI.
Collapse
|
14
|
Wu Z, Gao Y, Potter T, Benoit J, Shen J, Schulz PE, Zhang Y. Interactions Between Aging and Alzheimer's Disease on Structural Brain Networks. Front Aging Neurosci 2021; 13:639795. [PMID: 34177548 PMCID: PMC8222527 DOI: 10.3389/fnagi.2021.639795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Normative aging and Alzheimer's disease (AD) propagation alter anatomical connections among brain parcels. However, the interaction between the trajectories of age- and AD-linked alterations in the topology of the structural brain network is not well understood. In this study, diffusion-weighted magnetic resonance imaging (MRI) datasets of 139 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used to document their structural brain networks. The 139 participants consist of 45 normal controls (NCs), 37 with early mild cognitive impairment (EMCI), 27 with late mild cognitive impairment (LMCI), and 30 AD patients. All subjects were further divided into three subgroups based on their age (56-65, 66-75, and 71-85 years). After the structural connectivity networks were built using anatomically-constrained deterministic tractography, their global and nodal topological properties were estimated, including network efficiency, characteristic path length, transitivity, modularity coefficient, clustering coefficient, and betweenness. Statistical analyses were then performed on these metrics using linear regression, and one- and two-way ANOVA testing to examine group differences and interactions between aging and AD propagation. No significant interactions were found between aging and AD propagation in the global topological metrics (network efficiency, characteristic path length, transitivity, and modularity coefficient). However, nodal metrics (clustering coefficient and betweenness centrality) of some cortical parcels exhibited significant interactions between aging and AD propagation, with affected parcels including left superior temporal, right pars triangularis, and right precentral. The results collectively confirm the age-related deterioration of structural networks in MCI and AD patients, providing novel insight into the cross effects of aging and AD disorder on brain structural networks. Some early symptoms of AD may also be due to age-associated anatomic vulnerability interacting with early anatomic changes associated with AD.
Collapse
Affiliation(s)
- Zhanxiong Wu
- School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Yunyuan Gao
- Department of Intelligent Control and Robotics Institute, College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Thomas Potter
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Julia Benoit
- Texas Institute for Measurement Evaluation and Statistics, Department of Basic Vision Sciences, University of Houston, Houston, TX, United States
| | - Jian Shen
- Neurosurgery Department, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Paul E. Schulz
- Department of Neurology, The McGovern Medical School of UTHealth-Houston, Houston, TX, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | |
Collapse
|
15
|
Gao Z, Dang W, Wang X, Hong X, Hou L, Ma K, Perc M. Complex networks and deep learning for EEG signal analysis. Cogn Neurodyn 2021; 15:369-388. [PMID: 34040666 PMCID: PMC8131466 DOI: 10.1007/s11571-020-09626-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/20/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Electroencephalogram (EEG) signals acquired from brain can provide an effective representation of the human's physiological and pathological states. Up to now, much work has been conducted to study and analyze the EEG signals, aiming at spying the current states or the evolution characteristics of the complex brain system. Considering the complex interactions between different structural and functional brain regions, brain network has received a lot of attention and has made great progress in brain mechanism research. In addition, characterized by autonomous, multi-layer and diversified feature extraction, deep learning has provided an effective and feasible solution for solving complex classification problems in many fields, including brain state research. Both of them show strong ability in EEG signal analysis, but the combination of these two theories to solve the difficult classification problems based on EEG signals is still in its infancy. We here review the application of these two theories in EEG signal research, mainly involving brain-computer interface, neurological disorders and cognitive analysis. Furthermore, we also develop a framework combining recurrence plots and convolutional neural network to achieve fatigue driving recognition. The results demonstrate that complex networks and deep learning can effectively implement functional complementarity for better feature extraction and classification, especially in EEG signal analysis.
Collapse
Affiliation(s)
- Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Weidong Dang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Xinmin Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Xiaolin Hong
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Linhua Hou
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Kai Ma
- Tencent Youtu Lab, Malata Building, 9998 Shennan Avenue, Shenzhen, 518057 Guangdong Province China
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
16
|
Li F, Yi C, Liao Y, Jiang Y, Si Y, Song L, Zhang T, Yao D, Zhang Y, Cao Z, Xu P. Reconfiguration of Brain Network Between Resting State and P300 Task. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2965135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Olejarczyk E, Jozwik A, Valiulis V, Dapsys K, Gerulskis G, Germanavicius A. Statistical Analysis of Graph-Theoretic Indices to Study EEG-TMS Connectivity in Patients With Depression. Front Neuroinform 2021; 15:651082. [PMID: 33897399 PMCID: PMC8060557 DOI: 10.3389/fninf.2021.651082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Aim The objective of this work was to demonstrate the usefulness of a novel statistical method to study the impact of transcranial magnetic stimulation (TMS) on brain connectivity in patients with depression using different stimulation protocols, i.e., 1 Hz repetitive TMS over the right dorsolateral prefrontal cortex (DLPFC) (protocol G1), 10 Hz repetitive TMS over the left DLPFC (G2), and intermittent theta burst stimulation (iTBS) consisting of three 50 Hz burst bundle repeated at 5 Hz frequency (G3). Methods Electroencephalography (EEG) connectivity analysis was performed using Directed Transfer Function (DTF) and a set of 21 indices based on graph theory. The statistical analysis of graph-theoretic indices consisted of a combination of the k-NN rule, the leave-one-out method, and a statistical test using a 2 × 2 contingency table. Results Our new statistical approach allowed for selection of the best set of graph-based indices derived from DTF, and for differentiation between conditions (i.e., before and after TMS) and between TMS protocols. The effects of TMS was found to differ based on frequency band. Conclusion A set of four brain asymmetry measures were particularly useful to study protocol- and frequency-dependent effects of TMS on brain connectivity. Significance The new approach would allow for better evaluation of the therapeutic effects of TMS and choice of the most appropriate stimulation protocol.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Jozwik
- Faculty of Physics and Applied Informatics, University in Łódź, Łódź, Poland
| | - Vladas Valiulis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Kastytis Dapsys
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Giedrius Gerulskis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Arunas Germanavicius
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| |
Collapse
|
18
|
Sharma G, Parashar A, Joshi AM. DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102393] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Sun J, Cao R, Zhou M, Hussain W, Wang B, Xue J, Xiang J. A hybrid deep neural network for classification of schizophrenia using EEG Data. Sci Rep 2021; 11:4706. [PMID: 33633134 PMCID: PMC7907145 DOI: 10.1038/s41598-021-83350-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Schizophrenia is a serious mental illness that causes great harm to patients, so timely and accurate detection is essential. This study aimed to identify a better feature to represent electroencephalography (EEG) signals and improve the classification accuracy of patients with schizophrenia and healthy controls by using EEG signals. Our research method involves two steps. First, the EEG time series is preprocessed, and the extracted time-domain and frequency-domain features are transformed into a sequence of red-green-blue (RGB) images that carry spatial information. Second, we construct hybrid deep neural networks (DNNs) that combine convolution neural networks and long short-term memory to address RGB images to classify schizophrenic patients and healthy controls. The results show that the fuzzy entropy (FuzzyEn) feature is more significant than the fast Fourier transform (FFT) feature in brain topography. The deep learning (DL) method that we propose achieves an average accuracy of 99.22% with FuzzyEn and an average accuracy of 96.34% with FFT. These results show that the best effect is to extract fuzzy features as input features from EEG time series and then use a hybrid DNN for classification. Compared with the most advanced methods in this field, significant improvements have been achieved.
Collapse
Affiliation(s)
- Jie Sun
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Rui Cao
- grid.440656.50000 0000 9491 9632College of Software, Taiyuan University of Technology, Taiyuan, China
| | - Mengni Zhou
- grid.261356.50000 0001 1302 4472Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Waqar Hussain
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jiayue Xue
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- grid.440656.50000 0000 9491 9632College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
20
|
Uyulan C, Ergüzel TT, Unubol H, Cebi M, Sayar GH, Nezhad Asad M, Tarhan N. Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models: Deep Learning Approach. Clin EEG Neurosci 2021; 52:38-51. [PMID: 32491928 DOI: 10.1177/1550059420916634] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human brain is characterized by complex structural, functional connections that integrate unique cognitive characteristics. There is a fundamental hurdle for the evaluation of both structural and functional connections of the brain and the effects in the diagnosis and treatment of neurodegenerative diseases. Currently, there is no clinically specific diagnostic biomarker capable of confirming the diagnosis of major depressive disorder (MDD). Therefore, exploring translational biomarkers of mood disorders based on deep learning (DL) has valuable potential with its recently underlined promising outcomes. In this article, an electroencephalography (EEG)-based diagnosis model for MDD is built through advanced computational neuroscience methodology coupled with a deep convolutional neural network (CNN) approach. EEG recordings are analyzed by modeling 3 different deep CNN structure, namely, ResNet-50, MobileNet, Inception-v3, in order to dichotomize MDD patients and healthy controls. EEG data are collected for 4 main frequency bands (Δ, θ, α, and β, accompanying spatial resolution with location information by collecting data from 19 electrodes. Following the pre-processing step, different DL architectures were employed to underline discrimination performance by comparing classification accuracies. The classification performance of models based on location data, MobileNet architecture generated 89.33% and 92.66% classification accuracy. As to the frequency bands, delta frequency band outperformed compared to other bands with 90.22% predictive accuracy and area under curve (AUC) value of 0.9 for ResNet-50 architecture. The main contribution of the study is the delineation of distinctive spatial and temporal features using various DL architectures to dichotomize 46 MDD subjects from 46 healthy subjects. Exploring translational biomarkers of mood disorders based on DL perspective is the main focus of this study and, though it is challenging, with its promising potential to improve our understanding of the psychiatric disorders, computational methods are highly worthy for the diagnosis process and valuable in terms of both speed and accuracy compared with classical approaches.
Collapse
Affiliation(s)
- Caglar Uyulan
- Department of Mechatronics, Faculty of Engineering, Bulent Ecevit University, Zonguldak, Turkey
| | - Türker Tekin Ergüzel
- Department of Software Engineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey
| | - Huseyin Unubol
- Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,NP Istanbul Brain Hospital, Istanbul, Turkey
| | - Merve Cebi
- Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,NP Istanbul Brain Hospital, Istanbul, Turkey
| | - Gokben Hizli Sayar
- Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,NP Istanbul Brain Hospital, Istanbul, Turkey
| | | | - Nevzat Tarhan
- Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey.,NP Istanbul Brain Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Formica C, Bonanno L, Todaro A, Marra A, Alagna A, Corallo F, Marino S, Bramanti A, De Salvo S. The role of mind theory in patients affected by neurodegenerative disorders and impact on caregiver burden. J Clin Neurosci 2020; 78:291-295. [DOI: 10.1016/j.jocn.2020.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/03/2020] [Indexed: 11/30/2022]
|
22
|
Fu R, Wang H, Bao T, Han M. EEG intentions recognition in dynamic complex object control task by functional brain networks and regularized discriminant analysis. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Ruiz-Gomez SJ, Gomez C, Poza J, Revilla-Vallejo M, Gutierrez-de-Pablo V, Rodriguez-Gonzalez V, Maturana-Candelas A, Hornero R. Volume Conduction Effects on Connectivity Metrics: Application of Network Parameters to Characterize Alzheimer's Disease Continuum. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:30-33. [PMID: 33017923 DOI: 10.1109/embc44109.2020.9176398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study had two main objectives: (i) to study the effects of volume conduction on different connectivity metrics (Amplitude Envelope Correlation AEC, Phase Lag Index PLI, and Magnitude Squared Coherence MSCOH), comparing the coupling patterns at electrode- and sensor-level; and (ii) to characterize spontaneous EEG activity during different stages of Alzheimer's disease (AD) continuum by means of three complementary network parameters: node degree (k), characteristic path length (L), and clustering coefficient (C). Our results revealed that PLI and AEC are weakly influenced by volume conduction compared to MSCOH, but they are not immune to it. Furthermore, network parameters obtained from PLI showed that AD continuum is characterized by an increase in L and C in low frequency bands, suggesting lower integration and higher segregation as the disease progresses. These network changes reflect the abnormalities during AD continuum and are mainly due to neuronal alterations, because PLI is slightly affected by volume conduction effects.
Collapse
|
24
|
Uudeberg T, Paeske L, Hinrikus H, Lass J, Bachmann M. Reliability of Electroencephalogram-Based Individual Markers - Case Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:276-279. [PMID: 33017982 DOI: 10.1109/embc44109.2020.9175274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate individual level of natural variability of electroencephalogram (EEG) based markers. Three linear: alpha power variability, spectral asymmetry index, relative gamma power and three nonlinear methods: Higuchi's fractal dimension, detrended fluctuation analysis, and Lempel-Ziv complexity were selected. The markers were evaluated over 15 sessions acquired in 14 months. The results indicate that individual natural variability for five of the selected markers is lower compared to differences between healthy and depressed groups of subjects in our previous studies. The results of the current study suggest that EEG based markers can be applied for evaluation of disturbances in brain activity at individual level.Clinical Relevance-The indicated stability in the current study of widely used EEG-based markers at individual level suggests a promising opportunity to apply EEG as a novel method in diagnoses of brain mental disorders in clinical practice.
Collapse
|
25
|
Ortiz A, Martinez-Murcia FJ, Luque JL, Giménez A, Morales-Ortega R, Ortega J. Dyslexia Diagnosis by EEG Temporal and Spectral Descriptors: An Anomaly Detection Approach. Int J Neural Syst 2020; 30:2050029. [PMID: 32496139 DOI: 10.1142/s012906572050029x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diagnosis of learning difficulties is a challenging goal. There are huge number of factors involved in the evaluation procedure that present high variance among the population with the same difficulty. Diagnosis is usually performed by scoring subjects according to results obtained in different neuropsychological (performance-based) tests specifically designed to this end. One of the most frequent disorders is developmental dyslexia (DD), a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling. Its prevalence is estimated between 5% and 12% of the population. Traditional tests for DD diagnosis aim to measure different behavioral variables involved in the reading process. In this paper, we propose a diagnostic method not based on behavioral variables but on involuntary neurophysiological responses to different auditory stimuli. The experiments performed use electroencephalography (EEG) signals to analyze the temporal behavior and the spectral content of the signal acquired from each electrode to extract relevant (temporal and spectral) features. Moreover, the relationship of the features extracted among electrodes allows to infer a connectivity-like model showing brain areas that process auditory stimuli in a synchronized way. Then an anomaly detection system based on the reconstruction residuals of an autoencoder using these features has been proposed. Hence, classification is performed by the proposed system based on the differences in the resulting connectivity models that have demonstrated to be a useful tool for differential diagnosis of DD as well as a method to step towards gaining a better knowledge of the brain processes involved in DD. The results corroborate that nonspeech stimulus modulated at specific frequencies related to the sampling processes developed in the brain to capture rhymes, syllables and phonemes produces effects in specific frequency bands that differentiate between controls and DD subjects. The proposed method showed relatively high sensitivity above 0.6, and up to 0.9 in some of the experiments.
Collapse
Affiliation(s)
- Andrés Ortiz
- Department of Communications Engineering, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain.,Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, C/Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain
| | - Francisco J Martinez-Murcia
- Department of Communications Engineering, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain.,Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, C/Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain
| | - Juan L Luque
- Department of Developmental and Educational Psychology, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Almudena Giménez
- Department of Basic Psychology, Faculty of Psychology, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Roberto Morales-Ortega
- Department of Computer Architecture and Technology, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| | - Julio Ortega
- Department of Computer Architecture and Technology, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| |
Collapse
|
26
|
Ieracitano C, Mammone N, Hussain A, Morabito FC. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw 2020; 123:176-190. [DOI: 10.1016/j.neunet.2019.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022]
|
27
|
Ruiz E, Ramírez J, Górriz JM, Casillas J. Alzheimer's Disease Computer-Aided Diagnosis: Histogram-Based Analysis of Regional MRI Volumes for Feature Selection and Classification. J Alzheimers Dis 2019; 65:819-842. [PMID: 29966190 DOI: 10.3233/jad-170514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This paper proposes a novel fully automatic computer-aided diagnosis (CAD) system for the early detection of Alzheimer's disease (AD) based on supervised machine learning methods. The novelty of the approach, which is based on histogram analysis, is twofold: 1) a feature extraction process that aims to detect differences in brain regions of interest (ROIs) relevant for the recognition of subjects with AD and 2) an original greedy algorithm that predicts the severity of the effects of AD on these regions. This algorithm takes account of the progressive nature of AD that affects the brain structure with different levels of severity, i.e., the loss of gray matter in AD is found first in memory-related areas of the brain such as the hippocampus. Moreover, the proposed feature extraction process generates a reduced set of attributes which allows the use of general-purpose classification machine learning algorithms. In particular, the proposed feature extraction approach assesses the ROI image separability between classes in order to identify the ones with greater discriminant power. These regions will have the highest influence in the classification decision at the final stage. Several experiments were carried out on segmented magnetic resonance images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) in order to show the benefits of the overall method. The proposed CAD system achieved competitive classification results in a highly efficient and straightforward way.
Collapse
|
28
|
Lo Giudice P, Mammone N, Morabito FC, Pizzimenti RG, Ursino D, Virgili L. Leveraging network analysis to support experts in their analyses of subjects with MCI and AD. Med Biol Eng Comput 2019; 57:1961-1983. [PMID: 31301007 DOI: 10.1007/s11517-019-02004-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/09/2019] [Indexed: 11/25/2022]
Abstract
In this paper, we propose a network analysis-based approach to help experts in their analyses of subjects with mild cognitive impairment (hereafter, MCI) and Alzheimer's disease (hereafter, AD) and to investigate the evolution of these subjects over time. The inputs of our approach are the electroencephalograms (hereafter, EEGs) of the patients to analyze, performed at a certain time and, again, 3 months later. Given an EEG of a subject, our approach constructs a network with nodes that represent the electrodes and edges that denote connections between electrodes. Then, it applies several network-based techniques allowing the investigation of subjects with MCI and AD and the analysis of their evolution over time. (i) A connection coefficient, supporting experts to distinguish patients with MCI from patients with AD; (ii) A conversion coefficient, supporting experts to verify if a subject with MCI is converting to AD; (iii) Some network motifs, i.e., network patterns very frequent in one kind of patient and absent, or very rare, in the other. Patients with AD, just by the very nature of their condition, cannot be forced to stay motionless while undergoing examinations for a long time. EEG is a non-invasive examination that can be easily done on them. Since AD and MCI, if prodromal to AD, are associated with a loss of cortical connections, the adoption of network analysis appears suitable to investigate the effects of the progression of the disease on EEG. This paper confirms the suitability of this idea Graphical Abstract Ability of our proposed model to distinguish a control subject from a patient with MCI and a patient with AD. Blue edges represent strong connections among the corresponding brain areas; red edges denote middle connections, whereas green edges indicate weak connections. In the control subject (at the top), most connections are blue. In the patient with MCI (at the middle), most connections are red and green. In the patient with AD (at the bottom), most connections are either absent or green. .
Collapse
Affiliation(s)
- Paolo Lo Giudice
- DIIES, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Nadia Mammone
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Luca Virgili
- DII, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
29
|
A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J Neurosci Methods 2019; 322:88-95. [DOI: 10.1016/j.jneumeth.2019.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022]
|
30
|
Sheng J, Wang B, Zhang Q, Liu Q, Ma Y, Liu W, Shao M, Chen B. A novel joint HCPMMP method for automatically classifying Alzheimer’s and different stage MCI patients. Behav Brain Res 2019; 365:210-221. [DOI: 10.1016/j.bbr.2019.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
|
31
|
Serra A, Galdi P, Pesce E, Fratello M, Trojsi F, Tedeschi G, Tagliaferri R, Esposito F. Strong-Weak Pruning for Brain Network Identification in Connectome-Wide Neuroimaging: Application to Amyotrophic Lateral Sclerosis Disease Stage Characterization. Int J Neural Syst 2019; 29:1950007. [PMID: 30929575 DOI: 10.1142/s0129065719500072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging allows acquiring functional and structural connectivity data from which high-density whole-brain networks can be derived to carry out connectome-wide analyses in normal and clinical populations. Graph theory has been widely applied to investigate the modular structure of brain connections by using centrality measures to identify the "hub" of human connectomes, and community detection methods to delineate subnetworks associated with diverse cognitive and sensorimotor functions. These analyses typically rely on a preprocessing step (pruning) to reduce computational complexity and remove the weakest edges that are most likely affected by experimental noise. However, weak links may contain relevant information about brain connectivity, therefore, the identification of the optimal trade-off between retained and discarded edges is a subject of active research. We introduce a pruning algorithm to identify edges that carry the highest information content. The algorithm selects both strong edges (i.e. edges belonging to shortest paths) and weak edges that are topologically relevant in weakly connected subnetworks. The newly developed "strong-weak" pruning (SWP) algorithm was validated on simulated networks that mimic the structure of human brain networks. It was then applied for the analysis of a real dataset of subjects affected by amyotrophic lateral sclerosis (ALS), both at the early (ALS2) and late (ALS3) stage of the disease, and of healthy control subjects. SWP preprocessing allowed identifying statistically significant differences in the path length of networks between patients and healthy subjects. ALS patients showed a decrease of connectivity between frontal cortex to temporal cortex and parietal cortex and between temporal and occipital cortex. Moreover, degree of centrality measures revealed significantly different hub and centrality scores between patient subgroups. These findings suggest a widespread alteration of network topology in ALS associated with disease progression.
Collapse
Affiliation(s)
- Angela Serra
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,†Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Paola Galdi
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,‡MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Emanuele Pesce
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,§International Digital Laboratory, WMG, University of Coventry, CV4 7AL, UK
| | - Michele Fratello
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Francesca Trojsi
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Gioacchino Tedeschi
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Roberto Tagliaferri
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy
| | - Fabrizio Esposito
- ∥Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (Sa), 84081, Italy
| |
Collapse
|
32
|
Collazos-Huertas D, Cárdenas-Peña D, Castellanos-Dominguez G. Instance-Based Representation Using Multiple Kernel Learning for Predicting Conversion to Alzheimer Disease. Int J Neural Syst 2019; 29:1850042. [DOI: 10.1142/s0129065718500429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The early detection of Alzheimer’s disease and quantification of its progression poses multiple difficulties for machine learning algorithms. Two of the most relevant issues are related to missing data and results interpretability. To deal with both issues, we introduce a methodology to predict conversion of mild cognitive impairment patients to Alzheimer’s from structural brain MRI volumes. First, we use morphological measures of each brain structure to build an instance-based feature mapping that copes with missed follow-up visits. Then, the extracted multiple feature mappings are combined into a single representation through the convex combination of reproducing kernels. The weighting parameters per structure are tuned based on the maximization of the centered-kernel alignment criterion. We evaluate the proposed methodology on a couple of well-known classification machines employing the ADNI database devoted to assessing the combined prognostic value of several AD biomarkers. The obtained experimental results show that our proposed method of Instance-based representation using multiple kernel learning enables detecting mild cognitive impairment as well as predicting conversion to Alzheimers disease within three years from the initial screening. Besides, the brain structures with larger combination weights are directly related to memory and cognitive functions.
Collapse
Affiliation(s)
- D. Collazos-Huertas
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, Colombia
| | - D. Cárdenas-Peña
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, Colombia
| | - G. Castellanos-Dominguez
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, Colombia
| |
Collapse
|
33
|
Hua C, Wang H, Wang H, Lu S, Liu C, Khalid SM. A Novel Method of Building Functional Brain Network Using Deep Learning Algorithm with Application in Proficiency Detection. Int J Neural Syst 2019; 29:1850015. [DOI: 10.1142/s0129065718500156] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Functional brain network (FBN) has become very popular to analyze the interaction between cortical regions in the last decade. But researchers always spend a long time to search the best way to compute FBN for their specific studies. The purpose of this study is to detect the proficiency of operators during their mineral grinding process controlling based on FBN. To save the search time, a novel semi-data-driven method of computing functional brain connection based on stacked autoencoder (BCSAE) is proposed in this paper. This method uses stacked autoencoder (SAE) to encode the multi-channel EEG data into codes and then computes the dissimilarity between the codes from every pair of electrodes to build FBN. The highlight of this method is that the SAE has a multi-layered structure and is semi-supervised, which means it can dig deeper information and generate better features. Then an experiment was performed, the EEG of the operators were collected while they were operating and analyzed to detect their proficiency. The results show that the BCSAE method generated more number of separable features with less redundancy, and the average accuracy of classification (96.18%) is higher than that of the control methods: PLV (92.19%) and PLI (78.39%).
Collapse
Affiliation(s)
- Chengcheng Hua
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Hong Wang
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Hong Wang
- Control System Centre, The University of Manchester, Manchester, UK
| | - Shaowen Lu
- State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110189, P. R. China
| | - Chong Liu
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Syed Madiha Khalid
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
34
|
Vuksanović V, Staff RT, Ahearn T, Murray AD, Wischik CM. Cortical Thickness and Surface Area Networks in Healthy Aging, Alzheimer's Disease and Behavioral Variant Fronto-Temporal Dementia. Int J Neural Syst 2018; 29:1850055. [PMID: 30638083 DOI: 10.1142/s0129065718500557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Models of the human brain as a complex network of inter-connected sub-units are important in helping to understand the structural basis of the clinical features of neurodegenerative disorders. The aim of this study was to characterize in a systematic manner the differences in the structural correlation networks in cortical thickness (CT) and surface area (SA) in Alzheimer's disease (AD) and behavioral variant Fronto-Temporal Dementia (bvFTD). We have used the baseline magnetic resonance imaging (MRI) data available from a large population of patients from three clinical trials in mild to moderate AD and mild bvFTD and compared this to a well-characterized healthy aging cohort. The study population comprised 202 healthy elderly subjects, 213 with bvFTD and 213 with AD. We report that both CT and SA network architecture can be described in terms of highly correlated networks whose positive and inverse links map onto the intrinsic modular organization of the four cortical lobes. The topology of the disturbance in structural network is different in the two disease conditions, and both are different from normal aging. The changes from normal are global in character and are not restricted to fronto-temporal and temporo-parietal lobes, respectively, in bvFTD and AD, and indicate an increase in both global correlational strength and in particular nonhomologous inter-lobar connectivity defined by inverse correlations. These inverse correlations appear to be adaptive in character, reflecting coordinated increases in CT and SA that may compensate for corresponding impairment in functionally linked nodes. The effects were more pronounced in the cortical thickness atrophy network in bvFTD and in the surface area network in AD. Although lobar modularity is preserved in the context of neurodegenerative disease, the hub-like organization of networks differs both from normal and between the two forms of dementia. This implies that hubs may be secondary features of the connectivity adaptation to neurodegeneration and may not be an intrinsic property of the brain. However, analysis of the topological differences in hub-like organization CT and SA networks, and their underlying positive and negative correlations, may provide a basis for assisting in the differential diagnosis of bvFTD and AD.
Collapse
Affiliation(s)
- Vesna Vuksanović
- 1Aberdeen Biomedical Imaging Center, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Roger T Staff
- 2Imaging Physics, National Health Service Grampian, Aberdeen, AB25 2ZD, UK
| | - Trevor Ahearn
- 2Imaging Physics, National Health Service Grampian, Aberdeen, AB25 2ZD, UK
| | - Alison D Murray
- 1Aberdeen Biomedical Imaging Center, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Claude M Wischik
- 3TauRx, Therapeutics, Aberdeen, AB24 5RP, UK.,4School of Medicine and Dentistry, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
35
|
Cai L, Wei X, Wang J, Yu H, Deng B, Wang R. Reconstruction of functional brain network in Alzheimer's disease via cross-frequency phase synchronization. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Valenzuela O, Jiang X, Carrillo A, Rojas I. Multi-Objective Genetic Algorithms to Find Most Relevant Volumes of the Brain Related to Alzheimer's Disease and Mild Cognitive Impairment. Int J Neural Syst 2018; 28:1850022. [DOI: 10.1142/s0129065718500223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Computer-Aided Diagnosis (CAD) represents a relevant instrument to automatically classify between patients with and without Alzheimer's Disease (AD) using several actual imaging techniques. This study analyzes the optimization of volumes of interest (VOIs) to extract three-dimensional (3D) textures from Magnetic Resonance Image (MRI) in order to diagnose AD, Mild Cognitive Impairment converter (MCIc), Mild Cognitive Impairment nonconverter (MCInc) and Normal subjects. A relevant feature of the proposed approach is the use of 3D features instead of traditional two-dimensional (2D) features, by using 3D discrete wavelet transform (3D-DWT) approach for performing feature extraction from T-1 weighted MRI. Due to the high number of coefficients when applying 3D-DWT to each of the VOIs, a feature selection algorithm based on mutual information is used, as is the minimum Redundancy Maximum Relevance (mRMR) algorithm. Region optimization has been performed in order to discover the most relevant regions (VOIs) in the brain with the use of Multi-Objective Genetic Algorithms, being one of the objectives to be optimize the accuracy of the system. The error index of the system is computed by the confusion matrix obtained by the multi-class support vector machine (SVM) classifier. Principal Component Analysis (PCA) is used with the purpose of reducing the number of features to the classifier. The cohort of subjects used in the study consisted of 296 different patients. A first group of 206 patients was used to optimize VOI selection and another group of 90 independent subjects (that did not belong to the first group) was used to test the solutions yielded by the genetic algorithm. The proposed methodology obtains excellent results in multi-class classification achieving accuracies of 94.4% and also extracting significant information on the location of the most relevant points of the brain. This suggests that the proposed method could aid in the research of other neurodegenerative diseases, improving the accuracy of the diagnosis and finding the most relevant regions of the brain associated with them.
Collapse
Affiliation(s)
- Olga Valenzuela
- Department of Applied Mathematics, University of Granada, Spain
| | - Xiaoyi Jiang
- Department of Computer Science, University of Munster, Germany
| | - Antonio Carrillo
- Department of Computer Architecture and Computer Technology, University of Granada, Spain
| | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, CITIC-UGR, University of Granada, Spain
| |
Collapse
|
37
|
Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H. Parkinson's disease: Cause factors, measurable indicators, and early diagnosis. Comput Biol Med 2018; 102:234-241. [PMID: 30253869 DOI: 10.1016/j.compbiomed.2018.09.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system caused due to the loss of dopaminergic neurons. It is classified under movement disorder as patients with PD present with tremor, rigidity, postural changes, and a decrease in spontaneous movements. Comorbidities including anxiety, depression, fatigue, and sleep disorders are observed prior to the diagnosis of PD. Gene mutations, exposure to toxic substances, and aging are considered as the causative factors of PD even though its genesis is unknown. This paper reviews PD etiologies, progression, and in particular measurable indicators of PD such as neuroimaging and electrophysiology modalities. In addition to gene therapy, neuroprotective, pharmacological, and neural transplantation treatments, researchers are actively aiming at identifying biological markers of PD with the goal of early diagnosis. Neuroimaging modalities used together with advanced machine learning techniques offer a promising path for the early detection and intervention in PD patients.
Collapse
Affiliation(s)
- Shreya Bhat
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal, 576104, India
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, 599491, Singapore; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| | - Yuki Hagiwara
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore
| | - Nahid Dadmehr
- Board-certified Neurologist, Columbus, OH, United States
| | - Hojjat Adeli
- Departments of Biomedical Informatics, Neurology, and Neuroscience, The Ohio State University, United States
| |
Collapse
|
38
|
Shanir PPM, Khan KA, Khan YU, Farooq O, Adeli H. Automatic Seizure Detection Based on Morphological Features Using One-Dimensional Local Binary Pattern on Long-Term EEG. Clin EEG Neurosci 2018; 49:351-362. [PMID: 29214865 DOI: 10.1177/1550059417744890] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epileptic neurological disorder of the brain is widely diagnosed using the electroencephalography (EEG) technique. EEG signals are nonstationary in nature and show abnormal neural activity during the ictal period. Seizures can be identified by analyzing and obtaining features of EEG signal that can detect these abnormal activities. The present work proposes a novel morphological feature extraction technique based on the local binary pattern (LBP) operator. LBP provides a unique decimal value to a sample point by weighing the binary outcomes after thresholding the neighboring samples with the present sample point. These LBP values assist in capturing the rising and falling edges of the EEG signal, thus providing a morphologically featured discriminating pattern for epilepsy detection. In the present work, the variability in the LBP values is measured by calculating the sum of absolute difference of the consecutive LBP values. Interquartile range is calculated over the preprocessed EEG signal to provide dispersion measure in the signal. For classification purpose, K-nearest neighbor classifier is used, and the performance is evaluated on 896.9 hours of data from CHB-MIT continuous EEG database. Mean accuracy of 99.7% and mean specificity of 99.8% is obtained with average false detection rate of 0.47/h and sensitivity of 99.2% for 136 seizures.
Collapse
Affiliation(s)
- P P Muhammed Shanir
- 1 Department of Electrical and Electronics Engineering, Thangal Kunju Musaliar College of Engineering, Kollam, Kerala, India.,2 Department of Electrical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Kashif Ahmad Khan
- 3 School of Electrical and Electronics Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Yusuf Uzzaman Khan
- 2 Department of Electrical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Omar Farooq
- 4 Department of Electronics Engineering, Zakir Husain College of Engineering and Technology, AMU Aligarh, Aligarh, Uttar Pradesh, India
| | - Hojjat Adeli
- 5 College of Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Fang C, Li C, Cabrerizo M, Barreto A, Andrian J, Rishe N, Loewenstein D, Duara R, Adjouadi M. Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer’s Disease. Int J Neural Syst 2018; 28:1850017. [DOI: 10.1142/s012906571850017x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer’s disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.
Collapse
Affiliation(s)
- Chen Fang
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Chunfei Li
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Mercedes Cabrerizo
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Armando Barreto
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Jean Andrian
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Naphtali Rishe
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - David Loewenstein
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center Miami Beach, Florida 33140, USA
- Department of Psychiatry & Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center Miami Beach, Florida 33140, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA
| | - Malek Adjouadi
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA
| |
Collapse
|
40
|
Martínez-Rodrigo A, García-Martínez B, Alcaraz R, González P, Fernández-Caballero A. Multiscale Entropy Analysis for Recognition of Visually Elicited Negative Stress From EEG Recordings. Int J Neural Syst 2018; 29:1850038. [PMID: 30375254 DOI: 10.1142/s0129065718500387] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Automatic identification of negative stress is an unresolved challenge that has received great attention in the last few years. Many studies have analyzed electroencephalographic (EEG) recordings to gain new insights about how the brain reacts to both short- and long-term stressful stimuli. Although most of them have only considered linear methods, the heterogeneity and complexity of the brain has recently motivated an increasing use of nonlinear metrics. Nonetheless, brain dynamics reflected in EEG recordings often exhibit a multiscale nature and no study dealing with this aspect has been developed yet. Hence, in this work two nonlinear indices for quantifying regularity and predictability of time series from several time scales are studied for the first time to discern between visually elicited emotional states of calmness and negative stress. The obtained results have revealed the maximum discriminant ability of 86.35% for the second time scale, thus suggesting that brain dynamics triggered by negative stress can be more clearly assessed after removal of some fast temporal oscillations. Moreover, both metrics have also been able to report complementary information for some brain areas.
Collapse
Affiliation(s)
- Arturo Martínez-Rodrigo
- * Departamento de Sistemas Informáticos, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, 16071-Cuenca, Spain
| | - Beatriz García-Martínez
- † Departamento de Sistemas Informáticos, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071-Albacete, Spain
| | - Raúl Alcaraz
- ‡ Research Group in Electronic, Biomedical and Telecommunication Engineering, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, 16071-Cuenca, Spain
| | - Pascual González
- § Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, 02071-Albacete, Spain.,¶ CIBERSAM (Biomedical Research Networking Centre in Mental Health), Spain
| | - Antonio Fernández-Caballero
- † Departamento de Sistemas Informáticos, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071-Albacete, Spain.,¶ CIBERSAM (Biomedical Research Networking Centre in Mental Health), Spain
| |
Collapse
|
41
|
Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP. Automated EEG-based screening of depression using deep convolutional neural network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 161:103-113. [PMID: 29852953 DOI: 10.1016/j.cmpb.2018.04.012] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/27/2018] [Accepted: 04/17/2018] [Indexed: 05/21/2023]
Abstract
In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
Collapse
Affiliation(s)
- U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia.
| | - Shu Lih Oh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
| | - Yuki Hagiwara
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
| | - Jen Hong Tan
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
| | - Hojjat Adeli
- Departments of Neuroscience, Neurology, Biomedical Informatics, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States
| | - D P Subha
- Department of Electrical Engineering, National Institute of Technology Calicut, India
| |
Collapse
|
42
|
Kabbara A, Eid H, El Falou W, Khalil M, Wendling F, Hassan M. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease. J Neural Eng 2018; 15:026023. [DOI: 10.1088/1741-2552/aaaa76] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Mammone N, Ieracitano C, Adeli H, Bramanti A, Morabito FC. Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5122-5135. [PMID: 29994428 DOI: 10.1109/tnnls.2018.2791644] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (p < 0.05), i.e., a reduced overall coupling strength, specifically in delta and θ bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, θ, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
Collapse
|
44
|
Hampel H, Toschi N, Babiloni C, Baldacci F, Black KL, Bokde AL, Bun RS, Cacciola F, Cavedo E, Chiesa PA, Colliot O, Coman CM, Dubois B, Duggento A, Durrleman S, Ferretti MT, George N, Genthon R, Habert MO, Herholz K, Koronyo Y, Koronyo-Hamaoui M, Lamari F, Langevin T, Lehéricy S, Lorenceau J, Neri C, Nisticò R, Nyasse-Messene F, Ritchie C, Rossi S, Santarnecchi E, Sporns O, Verdooner SR, Vergallo A, Villain N, Younesi E, Garaci F, Lista S. Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. J Alzheimers Dis 2018; 64:S47-S105. [PMID: 29562524 PMCID: PMC6008221 DOI: 10.3233/jad-179932] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems biology in exploratory translational neuroscience research on ND.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, Rome, Italy
- Institute for Research and Medical Care, IRCCS “San Raffaele Pisana”, Rome, Italy
| | - Filippo Baldacci
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - René S. Bun
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Francesco Cacciola
- Unit of Neurosurgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Enrica Cavedo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- IRCCS “San Giovanni di Dio-Fatebenefratelli”, Brescia, Italy
| | - Patrizia A. Chiesa
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Olivier Colliot
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; Department of Neuroradiology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Paris, France
| | - Cristina-Maria Coman
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Stanley Durrleman
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France
| | - Maria-Teresa Ferretti
- IREM, Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
- ZNZ Neuroscience Center Zurich, Zürich, Switzerland
| | - Nathalie George
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Épinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Remy Genthon
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Marie-Odile Habert
- Département de Médecine Nucléaire, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Karl Herholz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Foudil Lamari
- AP-HP, UF Biochimie des Maladies Neuro-métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle Épinière - ICM, F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Jean Lorenceau
- Institut de la Vision, INSERM, Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, CNRS UMR7210, Paris, France
| | - Christian Neri
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, CNRS UMR 8256, Institut de Biologie Paris-Seine (IBPS), Place Jussieu, F-75005, Paris, France
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata” & Pharmacology of Synaptic Disease Lab, European Brain Research Institute (E.B.R.I.), Rome, Italy
| | - Francis Nyasse-Messene
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Simone Rossi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Department of Medicine, Surgery and Neurosciences, Section of Human Physiology University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| | | | - Andrea Vergallo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicolas Villain
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | | | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Casa di Cura “San Raffaele Cassino”, Cassino, Italy
| | - Simone Lista
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| |
Collapse
|
45
|
Gomez-Pilar J, Poza J, Bachiller A, Gómez C, Núñez P, Lubeiro A, Molina V, Hornero R. Quantification of Graph Complexity Based on the Edge Weight Distribution Balance: Application to Brain Networks. Int J Neural Syst 2017; 28:1750032. [DOI: 10.1142/s0129065717500320] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The proposed complexity measure was designed to capture the interplay between two properties of a system: the ‘information’ (calculated by means of Shannon entropy) and the ‘order’ of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of node degree distribution. Furthermore, its variation with graph size [Formula: see text] is close to zero for [Formula: see text]. Results from the real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls and schizophrenia patients, although these changes are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to secondary pathways of the brain network.
Collapse
Affiliation(s)
- Javier Gomez-Pilar
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, 47011 Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, 47011 Valladolid, Spain
- IMUVA, Instituto de Investigación en Matemáticas, Universidad de Valladolid, Valladolid, Spain
- INCYL, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Alejandro Bachiller
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, 47011 Valladolid, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, 47011 Valladolid, Spain
| | - Pablo Núñez
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, 47011 Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Vicente Molina
- INCYL, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Psychiatry Department, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Clinical University Hospital of Valladolid, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, 47011 Valladolid, Spain
- IMUVA, Instituto de Investigación en Matemáticas, Universidad de Valladolid, Valladolid, Spain
- INCYL, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
46
|
Disrupted Brain Network in Children with Autism Spectrum Disorder. Sci Rep 2017; 7:16253. [PMID: 29176705 PMCID: PMC5701151 DOI: 10.1038/s41598-017-16440-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/13/2017] [Indexed: 01/21/2023] Open
Abstract
Alterations in brain connectivity have been extensively reported in autism spectrum disorder (ASD), while their effects on the topology of brain network are still unclear. This study investigated whether and how the brain networks in children with ASD were abnormally organized with resting state EEG. Temporal synchronization analysis was first applied to capture the aberrant brain connectivity. Then brain network topology was characterized by three graph analysis methods including the commonly-used weighted and binary graph, as well as minimum spanning tree (MST). Whole brain connectivity in ASD group was found to be significantly reduced in theta and alpha band compared to typically development children (TD). Weighted graph found significantly decreased path length together with marginally significantly decreased clustering coefficient in ASD in alpha band, indicating a loss of small-world architecture to a random network. Such abnormal network topology was also demonstrated in the binary graph. In MST analysis, children with ASD showed a significant lower leaf fractions with a decrease trend of tree hierarchy in the alpha band, suggesting a shift towards line-like decentralized organization in ASD. The altered brain network may offer an insight into the underlying pathology of ASD and possibly serve as a biomarker that may aid in diagnosis of ASD.
Collapse
|
47
|
López-Sanz D, Garcés P, Álvarez B, Delgado-Losada ML, López-Higes R, Maestú F. Network Disruption in the Preclinical Stages of Alzheimer’s Disease: From Subjective Cognitive Decline to Mild Cognitive Impairment. Int J Neural Syst 2017; 27:1750041. [DOI: 10.1142/s0129065717500411] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: Subjective Cognitive Decline (SCD) is a largely unknown state thought to represent a preclinical stage of Alzheimer’s Disease (AD) previous to mild cognitive impairment (MCI). However, the course of network disruption in these stages is scarcely characterized. Methods: We employed resting state magnetoencephalography in the source space to calculate network smallworldness, clustering, modularity and transitivity. Nodal measures (clustering and node degree) as well as modular partitions were compared between groups. Results: The MCI group exhibited decreased smallworldness, clustering and transitivity and increased modularity in theta and beta bands. SCD showed similar but smaller changes in clustering and transitivity, while exhibiting alterations in the alpha band in opposite direction to those showed by MCI for modularity and transitivity. At the node level, MCI disrupted both clustering and nodal degree while SCD showed minor changes in the latter. Additionally, we observed an increase in modular partition variability in both SCD and MCI in theta and beta bands. Conclusion: SCD elders exhibit a significant network disruption, showing intermediate values between HC and MCI groups in multiple parameters. These results highlight the relevance of cognitive concerns in the clinical setting and suggest that network disorganization in AD could start in the preclinical stages before the onset of cognitive symptoms.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| | - Pilar Garcés
- Laboratory of Cognitive Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
| | - Blanca Álvarez
- Memory Decline Prevention Center Madrid Salud, Ayuntamiento de Madrid 28006, Spain
| | | | - Ramón López-Higes
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| |
Collapse
|
48
|
A Permutation Disalignment Index-Based Complex Network Approach to Evaluate Longitudinal Changes in Brain-Electrical Connectivity. ENTROPY 2017. [DOI: 10.3390/e19100548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Sridhar C, Bhat S, Acharya UR, Adeli H, Bairy GM. Diagnosis of attention deficit hyperactivity disorder using imaging and signal processing techniques. Comput Biol Med 2017; 88:93-99. [DOI: 10.1016/j.compbiomed.2017.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022]
|
50
|
DelPozo-Banos M, Travieso CM, Alonso JB, John A. Evidence of a Task-Independent Neural Signature in the Spectral Shape of the Electroencephalogram. Int J Neural Syst 2017; 28:1750035. [PMID: 28835183 DOI: 10.1142/s0129065717500356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic and neurophysiological studies of electroencephalogram (EEG) have shown that an individual's brain activity during a given cognitive task is, to some extent, determined by their genes. In fact, the field of biometrics has successfully used this property to build systems capable of identifying users from their neural activity. These studies have always been carried out in isolated conditions, such as relaxing with eyes closed, identifying visual targets or solving mathematical operations. Here we show for the first time that the neural signature extracted from the spectral shape of the EEG is to a large extent independent of the recorded cognitive task and experimental condition. In addition, we propose to use this task-independent neural signature for more precise biometric identity verification. We present two systems: one based on real cepstrums and one based on linear predictive coefficients. We obtained verification accuracies above 89% on 4 of the 6 databases used. We anticipate this finding will create a new set of experimental possibilities within many brain research fields, such as the study of neuroplasticity, neurodegenerative diseases and brain machine interfaces, as well as the mentioned genetic, neurophysiological and biometric studies. Furthermore, the proposed biometric approach represents an important advance towards real world deployments of this new technology.
Collapse
Affiliation(s)
- Marcos DelPozo-Banos
- * Division of Digital Signal Processing, IDeTIC, University of Las Palmas de Gran Canaria, Las Palmas 35017, Spain.,† College of Medicine, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Carlos M Travieso
- * Division of Digital Signal Processing, IDeTIC, University of Las Palmas de Gran Canaria, Las Palmas 35017, Spain
| | - Jesus B Alonso
- * Division of Digital Signal Processing, IDeTIC, University of Las Palmas de Gran Canaria, Las Palmas 35017, Spain
| | - Ann John
- † College of Medicine, Swansea University, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|