1
|
Hogan R, Mathieson SR, Luca A, Ventura S, Griffin S, Boylan GB, O'Toole JM. Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG. NPJ Digit Med 2025; 8:17. [PMID: 39779830 PMCID: PMC11711471 DOI: 10.1038/s41746-024-01416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Neonatal seizures require urgent treatment, but often go undetected without expert EEG monitoring. We have developed and validated a seizure detection model using retrospective EEG data from 332 neonates. A convolutional neural network was trained and tested on over 50,000 hours (n = 202) of annotated single-channel EEG containing 12,402 seizure events. This model was then validated on two independent multi-reviewer datasets (n = 51 and n = 79). Increasing data and model size improved performance: Matthews correlation coefficient (MCC) and Pearson's correlation (r) increased by up to 50% (15%) with data (model) scaling. The largest model (21m parameters) achieved state-of-the-art on an open-access dataset (MCC = 0.764, r = 0.824, and AUC = 0.982). This model also attained expert-level performance on both validation sets, a first in this field, with no significant difference in inter-rater agreement when the model replaces an expert (∣Δκ∣ < 0.094, p > 0.05).
Collapse
Affiliation(s)
| | - Sean R Mathieson
- CergenX Ltd, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | | | - Soraia Ventura
- CergenX Ltd, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | | | - Geraldine B Boylan
- CergenX Ltd, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | | |
Collapse
|
2
|
Tian F, Zhang H, Tan Y, Zhu L, Shen L, Qian K, Hu B, Schuller BW, Yamamoto Y. An On-Board Executable Multi-Feature Transfer-Enhanced Fusion Model for Three-Lead EEG Sensor-Assisted Depression Diagnosis. IEEE J Biomed Health Inform 2025; 29:152-165. [PMID: 39466874 DOI: 10.1109/jbhi.2024.3487012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The development of affective computing and medical electronic technologies has led to the emergence of Artificial Intelligence (AI)-based methods for the early detection of depression. However, previous studies have often overlooked the necessity for the AI-assisted diagnosis system to be wearable and accessible in practical scenarios for depression recognition. In this work, we present an on-board executable multi-feature transfer-enhanced fusion model for our custom-designed wearable three-lead Electroencephalogram (EEG) sensor, based on EEG data collected from 73 depressed patients and 108 healthy controls. Experimental results show that the proposed model exhibits low-computational complexity (65.0 K parameters), promising Floating-Point Operations (FLOPs) performance (25.6 M), real-time processing (1.5 s/execution), and low power consumption (320.8 mW). Furthermore, it requires only 202.0 KB of Random Access Memory (RAM) and 279.6 KB of Read-Only Memory (ROM) when deployed on the EEG sensor. Despite its low computational and spatial complexity, the model achieves a notable classification accuracy of 95.2%, specificity of 94.0%, and sensitivity of 96.9% under independent test conditions. These results underscore the potential of deploying the model on the wearable three-lead EEG sensor for assisting in the diagnosis of depression.
Collapse
|
3
|
Seeuws N, De Vos M, Bertrand A. A Human-in-the-Loop Method for Annotation of Events in Biomedical Signals. IEEE J Biomed Health Inform 2025; 29:95-106. [PMID: 39269811 DOI: 10.1109/jbhi.2024.3460533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
OBJECTIVE Building large-scale data bases of biomedical signal recordings for training artificial-intelligence systems involves substantial human effort in data processing and annotation. In the case of event detection, experts need to exhaustively scroll through the recordings and highlight events of interest. METHODS We propose an iterative annotation support algorithm with a human in the loop to improve the efficiency of the annotation process. Our algorithm generates proposal events based on an event detection model trained on incomplete annotations. The human only needs to verify candidate events proposed by the tool instead of scrolling through the entire data set. Our algorithm iterates between proposal generation and verification to leverage the human-in-the-loop feedback to obtain a growing set of event annotations. RESULTS Our algorithm finds a substantial amount of events at a fraction of the human time spent when comparing with a benchmark method and the normal manual process, finding all events in one data set and 70% of events in another with the human-in-the-loop only viewing 20% of the data. CONCLUSION Our results show that combining human and computer effort can substantially speed up the annotation process for events in biomedical signal processing. SIGNIFICANCE Due to its simplicity and minimal reliance on task-specific information, our algorithm is broadly applicable, unlocking substantial improvements in the scalability and efficiency of biomedical signal annotation.
Collapse
|
4
|
Zou Z, Chen B, Xiao D, Tang F, Li X. Accuracy of Machine Learning in Detecting Pediatric Epileptic Seizures: Systematic Review and Meta-Analysis. J Med Internet Res 2024; 26:e55986. [PMID: 39661965 PMCID: PMC11669868 DOI: 10.2196/55986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/13/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Real-time monitoring of pediatric epileptic seizures poses a significant challenge in clinical practice. In recent years, machine learning (ML) has attracted substantial attention from researchers for diagnosing and treating neurological diseases, leading to its application for detecting pediatric epileptic seizures. However, systematic evidence substantiating its feasibility remains limited. OBJECTIVE This systematic review aimed to consolidate the existing evidence regarding the effectiveness of ML in monitoring pediatric epileptic seizures with an effort to provide an evidence-based foundation for the development and enhancement of intelligent tools in the future. METHODS We conducted a systematic search of the PubMed, Cochrane, Embase, and Web of Science databases for original studies focused on the detection of pediatric epileptic seizures using ML, with a cutoff date of August 27, 2023. The risk of bias in eligible studies was assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2). Meta-analyses were performed to evaluate the C-index and the diagnostic 4-grid table, using a bivariate mixed-effects model for the latter. We also examined publication bias for the C-index by using funnel plots and the Egger test. RESULTS This systematic review included 28 original studies, with 15 studies on ML and 13 on deep learning (DL). All these models were based on electroencephalography data of children. The pooled C-index, sensitivity, specificity, and accuracy of ML in the training set were 0.76 (95% CI 0.69-0.82), 0.77 (95% CI 0.73-0.80), 0.74 (95% CI 0.70-0.77), and 0.75 (95% CI 0.72-0.77), respectively. In the validation set, the pooled C-index, sensitivity, specificity, and accuracy of ML were 0.73 (95% CI 0.67-0.79), 0.88 (95% CI 0.83-0.91), 0.83 (95% CI 0.71-0.90), and 0.78 (95% CI 0.73-0.82), respectively. Meanwhile, the pooled C-index of DL in the validation set was 0.91 (95% CI 0.88-0.94), with sensitivity, specificity, and accuracy being 0.89 (95% CI 0.85-0.91), 0.91 (95% CI 0.88-0.93), and 0.89 (95% CI 0.86-0.92), respectively. CONCLUSIONS Our systematic review demonstrates promising accuracy of artificial intelligence methods in epilepsy detection. DL appears to offer higher detection accuracy than ML. These findings support the development of DL-based early-warning tools in future research. TRIAL REGISTRATION PROSPERO CRD42023467260; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023467260.
Collapse
Affiliation(s)
- Zhuan Zou
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Bin Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Spagnoli C, Pisani F. Acute symptomatic seizures in newborns: a narrative review. ACTA EPILEPTOLOGICA 2024; 6:5. [DOI: 10.1186/s42494-024-00151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractAcute symptomatic seizures are the main sign of neurological dysfunction in newborns. This is linked to the unique characteristics of the neonatal brain, making it hyperexcitable compared to older ages, and to the common occurrence of some forms of acquired brain injury, namely hypoxic-ischemic encephalopathy. In this narrative review we will provide an overview of neonatal seizures definition, their main underlying etiologies, diagnostic work-up and differential diagnoses, and will discuss about therapeutic options and prognostic outlook. The latest publications from the ILAE Task Force on Neonatal Seizures will be presented and discussed. Of note, they highlight the current lack of robust evidence in this field of clinical neurology. We will also report on specificities pertaining to low-and-middle income countries in terms of incidence, main etiologies and diagnosis. The possibilities offered by telemedicine and automated seizures detection will also be summarized in order to provide a framework for future directions in seizures diagnosis and management with a global perspective. Many challenges and opportunities for improving identification, monitoring and treatment of acute symptomatic seizures in newborns exist. All current caveats potentially represent different lines of research with the aim to provide better care and reach a deeper understanding of this important topic of neonatal neurology.
Collapse
|
6
|
Daly A, Lightbody G, Temko A. Analysis of the impact of deep learning know-how and data in modelling neonatal EEG. Sci Rep 2024; 14:28059. [PMID: 39543245 PMCID: PMC11564755 DOI: 10.1038/s41598-024-78979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
The performance gains achieved by deep learning models nowadays are mainly attributed to the usage of ever larger datasets. In this study, we present and contrast the performance gains that can be achieved via accessing larger high-quality datasets versus the gains that can be achieved from harnessing the latest deep learning architectural and training advances. Modelling neonatal EEG is particularly affected by the lack of publicly available large datasets. It is shown that greater performance gains can be achieved from harnessing the latest deep learning advances than using a larger training dataset when adopting AUC as a metric, whereas using AUC90 or AUC-PR as metrics greater performance gains are achieved from using a larger dataset than harnessing the latest deep learning advances. In all scenarios the best performance is obtained by combining both deep learning advances and larger datasets. A novel developed architecture is presented that outperforms the current state-of-the-art model for the task of neonatal seizure detection. A novel method to fine-tune the presented model towards site-specific settings based on pseudo labelling is also outlined. The code and the weights of the model are made publicly available for benchmarking future model performances for neonatal seizure detection.
Collapse
Affiliation(s)
- Aengus Daly
- Department of Mathematics, Munster Technological University, Cork, Ireland.
- Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland.
- INFANT Research Centre, University College Cork, Cork, Ireland.
| | - Gordon Lightbody
- Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Andriy Temko
- Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Liu Y, Jiang Y, Liu J, Li J, Liu M, Nie W, Yuan Q. Efficient EEG Feature Learning Model Combining Random Convolutional Kernel with Wavelet Scattering for Seizure Detection. Int J Neural Syst 2024; 34:2450060. [PMID: 39252680 DOI: 10.1142/s0129065724500606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Automatic seizure detection has significant value in epilepsy diagnosis and treatment. Although a variety of deep learning models have been proposed to automatically learn electroencephalography (EEG) features for seizure detection, the generalization performance and computational burden of such deep models remain the bottleneck of practical application. In this study, a novel lightweight model based on random convolutional kernel transform (ROCKET) is developed for EEG feature learning for seizure detection. Specifically, random convolutional kernels are embedded into the structure of a wavelet scattering network instead of original wavelet transform convolutions. Then the significant EEG features are selected from the scattering coefficients and convolutional outputs by analysis of variance (ANOVA) and minimum redundancy-maximum relevance (MRMR) methods. This model not only preserves the merits of the fast-training process from ROCKET, but also provides insight into seizure detection by retaining only the helpful channels. The extreme gradient boosting (XGboost) classifier was combined with this EEG feature learning model to build a comprehensive seizure detection system that achieved promising epoch-based results, with over 90% of both sensitivity and specificity on the scalp and intracranial EEG databases. The experimental comparisons showed that the proposed method outperformed other state-of-the-art methods for cross-patient and patient-specific seizure detection.
Collapse
Affiliation(s)
- Yasheng Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Yonghui Jiang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Jie Liu
- Department of Pediatric Intensive Care Unit, Shandong Provincial Maternal and Child Health Care Hospital, Affiliated to Qingdao University, Jinan 250014, P. R. China
| | - Jie Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Mingze Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Weiwei Nie
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University, Jinan 250014, P. R. China
| | - Qi Yuan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
8
|
Wang Y, Yuan S, Liu JX, Hu W, Jia Q, Xu F. Combining EEG Features and Convolutional Autoencoder for Neonatal Seizure Detection. Int J Neural Syst 2024; 34:2450040. [PMID: 38753012 DOI: 10.1142/s0129065724500400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Neonatal epilepsy is a common emergency phenomenon in neonatal intensive care units (NICUs), which requires timely attention, early identification, and treatment. Traditional detection methods mostly use supervised learning with enormous labeled data. Hence, this study offers a semi-supervised hybrid architecture for detecting seizures, which combines the extracted electroencephalogram (EEG) feature dataset and convolutional autoencoder, called Fd-CAE. First, various features in the time domain and entropy domain are extracted to characterize the EEG signal, which helps distinguish epileptic seizures subsequently. Then, the unlabeled EEG features are fed into the convolutional autoencoder (CAE) for training, which effectively represents EEG features by optimizing the loss between the input and output features. This unsupervised feature learning process can better combine and optimize EEG features from unlabeled data. After that, the pre-trained encoder part of the model is used for further feature learning of labeled data to obtain its low-dimensional feature representation and achieve classification. This model is performed on the neonatal EEG dataset collected at the University of Helsinki Hospital, which has a high discriminative ability to detect seizures, with an accuracy of 92.34%, precision of 93.61%, recall rate of 98.74%, and F1-score of 95.77%, respectively. The results show that unsupervised learning by CAE is beneficial to the characterization of EEG signals, and the proposed Fd-CAE method significantly improves classification performance.
Collapse
Affiliation(s)
- Yuxia Wang
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Wenrong Hu
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Qingwei Jia
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Fangzhou Xu
- School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
9
|
Seeuws N, De Vos M, Bertrand A. Avoiding Post-Processing With Event-Based Detection in Biomedical Signals. IEEE Trans Biomed Eng 2024; 71:2442-2453. [PMID: 38466599 DOI: 10.1109/tbme.2024.3375759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
OBJECTIVE Finding events of interest is a common task in biomedical signal processing. The detection of epileptic seizures and signal artefacts are two key examples. Epoch-based classification is the typical machine learning framework to detect such signal events because of the straightforward application of classical machine learning techniques. Usually, post-processing is required to achieve good performance and enforce temporal dependencies. Designing the right post-processing scheme to convert these classification outputs into events is a tedious, and labor-intensive element of this framework. METHODS We propose an event-based modeling framework that directly works with events as learning targets, stepping away from ad-hoc post-processing schemes to turn model outputs into events. We illustrate the practical power of this framework on simulated data and real-world data, comparing it to epoch-based modeling approaches. RESULTS We show that event-based modeling (without tailored post-processing) performs on par with or better than epoch-based modeling with extensive post-processing. CONCLUSION These results show the power of treating events as direct learning targets, instead of using ad-hoc post-processing to obtain them, severely reducing design effort. Significance The event-based modeling framework can easily be applied to other event detection problems in signal processing, removing the need for intensive task-specific post-processing.
Collapse
|
10
|
Huang L, Zhou K, Chen S, Chen Y, Zhang J. Automatic detection of epilepsy from EEGs using a temporal convolutional network with a self-attention layer. Biomed Eng Online 2024; 23:50. [PMID: 38824547 PMCID: PMC11143608 DOI: 10.1186/s12938-024-01244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Over 60% of epilepsy patients globally are children, whose early diagnosis and treatment are critical for their development and can substantially reduce the disease's burden on both families and society. Numerous algorithms for automated epilepsy detection from EEGs have been proposed. Yet, the occurrence of epileptic seizures during an EEG exam cannot always be guaranteed in clinical practice. Models that exclusively use seizure EEGs for detection risk artificially enhanced performance metrics. Therefore, there is a pressing need for a universally applicable model that can perform automatic epilepsy detection in a variety of complex real-world scenarios. METHOD To address this problem, we have devised a novel technique employing a temporal convolutional neural network with self-attention (TCN-SA). Our model comprises two primary components: a TCN for extracting time-variant features from EEG signals, followed by a self-attention (SA) layer that assigns importance to these features. By focusing on key features, our model achieves heightened classification accuracy for epilepsy detection. RESULTS The efficacy of our model was validated on a pediatric epilepsy dataset we collected and on the Bonn dataset, attaining accuracies of 95.50% on our dataset, and 97.37% (A v. E), and 93.50% (B vs E), respectively. When compared with other deep learning architectures (temporal convolutional neural network, self-attention network, and standardized convolutional neural network) using the same datasets, our TCN-SA model demonstrated superior performance in the automated detection of epilepsy. CONCLUSION The proven effectiveness of the TCN-SA approach substantiates its potential as a valuable tool for the automated detection of epilepsy, offering significant benefits in diverse and complex real-world clinical settings.
Collapse
Affiliation(s)
- Leen Huang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Keying Zhou
- Department of Pediatrics, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
- Department of Pediatrics, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Pediatrics, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Siyang Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yanzhao Chen
- Department of Pediatrics, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
- Department of Pediatrics, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Pediatrics, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Jinxin Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
11
|
Montazeri S, Nevalainen P, Metsäranta M, Stevenson NJ, Vanhatalo S. Clinical outcome prediction with an automated EEG trend, Brain State of the Newborn, after perinatal asphyxia. Clin Neurophysiol 2024; 162:68-76. [PMID: 38583406 DOI: 10.1016/j.clinph.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE To evaluate the utility of a fully automated deep learning -based quantitative measure of EEG background, Brain State of the Newborn (BSN), for early prediction of clinical outcome at four years of age. METHODS The EEG monitoring data from eighty consecutive newborns was analyzed using the automatically computed BSN trend. BSN levels during the first days of life (a of total 5427 hours) were compared to four clinical outcome categories: favorable, cerebral palsy (CP), CP with epilepsy, and death. The time dependent changes in BSN-based prediction for different outcomes were assessed by positive/negative predictive value (PPV/NPV) and by estimating the area under the receiver operating characteristic curve (AUC). RESULTS The BSN values were closely aligned with four visually determined EEG categories (p < 0·001), as well as with respect to clinical milestones of EEG recovery in perinatal Hypoxic Ischemic Encephalopathy (HIE; p < 0·003). Favorable outcome was related to a rapid recovery of the BSN trend, while worse outcomes related to a slow BSN recovery. Outcome predictions with BSN were accurate from 6 to 48 hours of age: For the favorable outcome, the AUC ranged from 95 to 99% (peak at 12 hours), and for the poor outcome the AUC ranged from 96 to 99% (peak at 12 hours). The optimal BSN levels for each PPV/NPV estimate changed substantially during the first 48 hours, ranging from 20 to 80. CONCLUSIONS We show that the BSN provides an automated, objective, and continuous measure of brain activity in newborns. SIGNIFICANCE The BSN trend discloses the dynamic nature that exists in both cerebral recovery and outcome prediction, supports individualized patient care, rapid stratification and early prognosis.
Collapse
Affiliation(s)
- Saeed Montazeri
- BABA Center, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physiology, University of Helsinki, Helsinki, Finland.
| | - Päivi Nevalainen
- BABA Center, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology, Epilepsia Helsinki, Full Member of ERN Epicare, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physiology, University of Helsinki, Helsinki, Finland; Department of Clinical Neurophysiology, Epilepsia Helsinki, Full Member of ERN Epicare, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Zhang R, Shi L, Zhang L, Lin X, Bao Y, Jiang F, Wu C, Wang J. Knowledge mapping of neonatal electroencephalogram: A bibliometric analysis (2004-2022). Brain Behav 2024; 14:e3483. [PMID: 38680038 PMCID: PMC11056713 DOI: 10.1002/brb3.3483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Electroencephalography (EEG), a widely used noninvasive neurophysiological diagnostic tool, has experienced substantial advancements from 2004 to 2022, particularly in neonatal applications. Utilizing a bibliometric methodology, this study delineates the knowledge structure and identifies emergent trends within neonatal EEG research. METHODS An exhaustive literature search was conducted on the Web of Science Core Collection (WoSCC) database to identify publications related to neonatal EEG from 2004 to 2022. Analytical tools such as VOSviewer, CiteSpace, and the R package "bibliometrix" were employed to facilitate this investigation. RESULTS The search yielded 2501 articles originating from 79 countries, with the United States and England being the predominant contributors. A yearly upward trend in publications concerning neonatal EEG was observed. Notable research institutions leading this field include the University of Helsinki, University College London, and University College Cork. Clinical Neurophysiology is identified as the foremost journal in this realm, with Pediatrics as the most frequently co-cited journal. The collective body of work from 9977 authors highlights Sampsa Vanhatalo as the most prolific contributor, while Mark Steven Scher is recognized as the most frequently co-cited author. Key terms such as "seizures," "epilepsy," "hypoxic-ischemic encephalopathy," "amplitude-integrated EEG," and "brain injury" represent the focal research themes. CONCLUSION This bibliometric analysis offers the first comprehensive review, encapsulating research trends and progress in neonatal EEG. It reveals current research frontiers and crucial directions, providing an essential resource for researchers engaged in neonatal neuroscience.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Lifeng Shi
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Lu Zhang
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xinao Lin
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Yunlei Bao
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Feng Jiang
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Chuyan Wu
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jimei Wang
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
13
|
Brogin JAF, Faber J, Reyes-Garcia SZ, Cavalheiro EA, Bueno DD. Epileptic seizure suppression: A computational approach for identification and control using real data. PLoS One 2024; 19:e0298762. [PMID: 38416729 PMCID: PMC10901337 DOI: 10.1371/journal.pone.0298762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
Epilepsy affects millions of people worldwide every year and remains an open subject for research. Current development on this field has focused on obtaining computational models to better understand its triggering mechanisms, attain realistic descriptions and study seizure suppression. Controllers have been successfully applied to mitigate epileptiform activity in dynamic models written in state-space notation, whose applicability is, however, restricted to signatures that are accurately described by them. Alternatively, autoregressive modeling (AR), a typical data-driven tool related to system identification (SI), can be directly applied to signals to generate more realistic models, and since it is inherently convertible into state-space representation, it can thus be used for the artificial reconstruction and attenuation of seizures as well. Considering this, the first objective of this work is to propose an SI approach using AR models to describe real epileptiform activity. The second objective is to provide a strategy for reconstructing and mitigating such activity artificially, considering non-hybrid and hybrid controllers - designed from ictal and interictal events, respectively. The results show that AR models of relatively low order represent epileptiform activities fairly well and both controllers are effective in attenuating the undesired activity while simultaneously driving the signal to an interictal condition. These findings may lead to customized models based on each signal, brain region or patient, from which it is possible to better define shape, frequency and duration of external stimuli that are necessary to attenuate seizures.
Collapse
Affiliation(s)
- João A. F. Brogin
- Department of Mechanical Engineering, São Paulo State University (UNESP), School of Engineering of Ilha Solteira, Ilha Solteira, São Paulo, Brazil
| | - Jean Faber
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Selvin Z. Reyes-Garcia
- Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Esper A. Cavalheiro
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Douglas D. Bueno
- Department of Mathematics, São Paulo State University (UNESP), School of Engineering of Ilha Solteira, Ilha Solteira, São Paulo, Brazil
| |
Collapse
|
14
|
Wang X, Wang X, Wang C, Wang Z, Liu X, Lv X, Tang Y. A Two-Stage Automatic System for Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms. eNeuro 2023; 10:ENEURO.0111-23.2023. [PMID: 37914407 PMCID: PMC10668214 DOI: 10.1523/eneuro.0111-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
The objective of this work was to develop a deep learning-based automatic system with reliable performance in detecting interictal epileptiform discharges (IEDs) from scalp electroencephalograms (EEGs). For the present study, 484 raw scalp EEG recordings were included, standardized, and split into 406 for training and 78 for testing. Two neurophysiologists individually annotated the recordings for training in channel-wise manner. Annotations were divided into segments, on which nine deep neural networks (DNNs) were trained for the multiclassification of IED, artifact, and background. The fitted IED detectors were then evaluated on 78 EEG recordings with IED events fully annotated by three experts independently (majority agreement). A two montage-based decision mechanism (TMDM) was designed to determine whether an IED event occurred at a single time instant. Area under the precision-recall curve (AUPRC), as well as false-positive rates, F1 scores, and kappa agreement scores for sensitivity = 0.8 were estimated. In multitype classification, five DNNs provided one-versus-rest AUPRC mean value >0.993 using fivefold cross-validation. In IED detection, the system that had integrated the temporal convolutional network (TCN)-based IED detector and the TMDM rule achieved an AUPRC of 0.811. The false positive was 0.194/min (11.64/h), and the F1 score was 0.745. The agreement score between the system and the experts was 0.905. The proposed framework provides a TCN-based IED detector and a novel two montage-based determining mechanism that combined to make an automatic IED detection system. The system would be useful in aiding clinic EEG interpretation.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Xing Wang
- Department of Signal Processing Research, Beijing Solar Electronic Technologies Company Ltd, Beijing 100044, People's Republic of China
| | - Chong Wang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Zhongyuan Wang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Xiangyu Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Xiaoling Lv
- Geriatrics Research Institute of Zhejiang Province, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou 310013, People's Republic of China
| | - Ying Tang
- Geriatrics Research Institute of Zhejiang Province, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou 310013, People's Republic of China
| |
Collapse
|
15
|
Debelo BS, Thamineni BL, Dasari HK, Dawud AA. Detection and Severity Identification of Neonatal Seizure Using Deep Convolutional Neural Networks from Multichannel EEG Signal. Pediatric Health Med Ther 2023; 14:405-417. [PMID: 37933303 PMCID: PMC10625745 DOI: 10.2147/phmt.s427773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Introduction One of the most frequent neurological conditions in newborns is neonatal seizures, which may indicate severe neurological dysfunction. These seizures may have very subtle or very modest clinical indications because patterns like oscillatory (spike) trains begin with relatively low amplitude and gradually increase over time. This becomes very challenging and erroneous if clinical observation is the primary basis for identifying newborn seizures. In this study, a diagnosis system using deep convolutional neural networks is proposed to determine and classify the severity level of neonatal seizures using multichannel neonatal EEG data. Methods Datasets from publicly accessible online sources were used to compile clinical multichannel EEG datasets. Various preprocessing steps were taken, including the conversion of 2D time series data to equivalent waveform pictures. The proposed models have undergone training, and evaluations of their performance were conducted. Results The proposed CNN was used to perform binary classification with an accuracy of 92.6%, F1-score of 92.7%, specificity of 92.8%, and precision of 92.6%. To detect newborn seizures, this model is utilized. Using the proposed CNN model, multiclassification was performed with accuracy rates of 88.6%, specificity rates of 92.18%, F1-score rates of 85.61%, and precision rates of 88.9%. The results demonstrated that the suggested strategy can assist medical professionals in making accurate diagnoses close to healthcare institutions. Conclusion The developed system was capable of detecting neonatal seizures and has the potential to be used as a decision-making tool in resource-limited areas with a scarcity of expert neurologists.
Collapse
Affiliation(s)
- Biniam Seifu Debelo
- Department of Biomedical Engineering, Nigist Eleni Mohamed Memorial Compressive Specialized Hospital, Wachamo University, Hosanna, Ethiopia
| | | | - Hanumesh Kumar Dasari
- Department of Electronics and Communication, Rayalaseema University, Kurnool, AP, India
| | - Ahmed Ali Dawud
- School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| |
Collapse
|
16
|
Raeisi K, Khazaei M, Tamburro G, Croce P, Comani S, Zappasodi F. A Class-Imbalance Aware and Explainable Spatio-Temporal Graph Attention Network for Neonatal Seizure Detection. Int J Neural Syst 2023; 33:2350046. [PMID: 37497802 DOI: 10.1142/s0129065723500466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Seizures are the most prevalent clinical indication of neurological disorders in neonates. In this study, a class-imbalance aware and explainable deep learning approach based on Convolutional Neural Networks (CNNs) and Graph Attention Networks (GATs) is proposed for the accurate automated detection of neonatal seizures. The proposed model integrates the temporal information of EEG signals with the spatial information on the EEG channels through the graph representation of the multi-channel EEG segments. One-dimensional CNNs are used to automatically develop a feature set that accurately represents the differences between seizure and nonseizure epochs in the time domain. By employing GAT, the attention mechanism is utilized to emphasize the critical channel pairs and information flow among brain regions. GAT coefficients were then used to empirically visualize the important regions during the seizure and nonseizure epochs, which can provide valuable insight into the location of seizures in the neonatal brain. Additionally, to tackle the severe class imbalance in the neonatal seizure dataset using under-sampling and focal loss techniques are used. Overall, the final Spatio-Temporal Graph Attention Network (ST-GAT) outperformed previous benchmarked methods with a mean AUC of 96.6% and Kappa of 0.88, demonstrating its high accuracy and potential for clinical applications.
Collapse
Affiliation(s)
- Khadijeh Raeisi
- Department of Neuroscience, Imaging and Clinical Sciences, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Mohammad Khazaei
- Department of Neuroscience, Imaging and Clinical Sciences, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Gabriella Tamburro
- Department of Neuroscience, Imaging and Clinical Sciences-Behavioral Imaging and Neural Dynamics Center, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences-Behavioral Imaging and Neural Dynamics Center, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Silvia Comani
- Department of Neuroscience, Imaging and Clinical Sciences-Behavioral Imaging and Neural Dynamics Center, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences-Behavioral, Imaging and Neural Dynamics Center-Institute for, Advanced Biomedical Technologies, Universita Gabriele d'Annunzio, Chieti 66100, Italy
| |
Collapse
|
17
|
Arcot Desai S, Afzal MF, Barry W, Kuo J, Benard S, Traner C, Tcheng T, Seale C, Morrell M. Expert and deep learning model identification of iEEG seizures and seizure onset times. Front Neurosci 2023; 17:1156838. [PMID: 37476840 PMCID: PMC10354337 DOI: 10.3389/fnins.2023.1156838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Hundreds of 90-s iEEG records are typically captured from each NeuroPace RNS System patient between clinic visits. While these records provide invaluable information about the patient's electrographic seizure and interictal activity patterns, manually classifying them into electrographic seizure/non-seizure activity, and manually identifying the seizure onset channels and times is an extremely time-consuming process. A convolutional neural network based Electrographic Seizure Classifier (ESC) model was developed in an earlier study. In this study, the classification model is tested against iEEG annotations provided by three expert reviewers board certified in epilepsy. The three experts individually annotated 3,874 iEEG channels from 36, 29, and 35 patients with leads in the mesiotemporal (MTL), neocortical (NEO), and MTL + NEO regions, respectively. The ESC model's seizure/non-seizure classification scores agreed with the three reviewers at 88.7%, 89.6%, and 84.3% which was similar to how reviewers agreed with each other (92.9%-86.4%). On iEEG channels with all 3 experts in agreement (83.2%), the ESC model had an agreement score of 93.2%. Additionally, the ESC model's certainty scores reflected combined reviewer certainty scores. When 0, 1, 2 and 3 (out of 3) reviewers annotated iEEG channels as electrographic seizures, the ESC model's seizure certainty scores were in the range: [0.12-0.19], [0.32-0.42], [0.61-0.70], and [0.92-0.95] respectively. The ESC model was used as a starting-point model for training a second Seizure Onset Detection (SOD) model. For this task, seizure onset times were manually annotated on a relatively small number of iEEG channels (4,859 from 50 patients). Experiments showed that fine-tuning the ESC models with augmented data (30,768 iEEG channels) resulted in a better validation performance (on 20% of the manually annotated data) compared to training with only the original data (3.1s vs 4.4s median absolute error). Similarly, using the ESC model weights as the starting point for fine-tuning instead of other model weight initialization methods provided significant advantage in SOD model validation performance (3.1s vs 4.7s and 3.5s median absolute error). Finally, on iEEG channels where three expert annotations of seizure onset times were within 1.5 s, the SOD model's seizure onset time prediction was within 1.7 s of expert annotation.
Collapse
Affiliation(s)
| | | | - Wade Barry
- NeuroPace, Inc., Mountain View, CA, United States
| | - Jonathan Kuo
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Shawna Benard
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | | | | | - Cairn Seale
- NeuroPace, Inc., Mountain View, CA, United States
| | - Martha Morrell
- NeuroPace, Inc., Mountain View, CA, United States
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
18
|
Lu X, Wang T, Ye M, Huang S, Wang M, Zhang J. Study on characteristic of epileptic multi-electroencephalograph base on Hilbert-Huang transform and brain network dynamics. Front Neurosci 2023; 17:1117340. [PMID: 37214385 PMCID: PMC10192695 DOI: 10.3389/fnins.2023.1117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Lots of studies have been carried out on characteristic of epileptic Electroencephalograph (EEG). However, traditional EEG characteristic research methods lack exploration of spatial information. To study the characteristics of epileptic EEG signals from the perspective of the whole brain,this paper proposed combination methods of multi-channel characteristics from time-frequency and spatial domains. This paper was from two aspects: Firstly, signals were converted into 2D Hilbert Spectrum (HS) images which reflected the time-frequency characteristics by Hilbert-Huang Transform (HHT). These images were identified by Convolutional Neural Network (CNN) model whose sensitivity was 99.8%, accuracy was 98.7%, specificity was 97.4%, F1-score was 98.7%, and AUC-ROC was 99.9%. Secondly, the multi-channel signals were converted into brain networks which reflected the spatial characteristics by Symbolic Transfer Entropy (STE) among different channels EEG. And the results show that there are different network properties between ictal and interictal phase and the signals during the ictal enter the synchronization state more quickly, which was verified by Kuramoto model. To summarize, our results show that there was different characteristics among channels for the ictal and interictal phase, which can provide effective physical non-invasive indicators for the identification and prediction of epileptic seizures.
Collapse
Affiliation(s)
- Xiaojie Lu
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
- Research Center of Health Big Data Mining and Applications, School of Medicine Information, Wan Nan Medical College, Wuhu, China
| | - Tingting Wang
- Research Center of Health Big Data Mining and Applications, School of Medicine Information, Wan Nan Medical College, Wuhu, China
| | - Mingquan Ye
- Research Center of Health Big Data Mining and Applications, School of Medicine Information, Wan Nan Medical College, Wuhu, China
| | - Shoufang Huang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Maosheng Wang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Jiqian Zhang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| |
Collapse
|
19
|
Du J, Morales A. Electrical Stimulation Induced Current Distribution in Peripheral Nerves Varies Significantly with the Extent of Nerve Damage: A Computational Study Utilizing Convolutional Neural Network and Realistic Nerve Models. Int J Neural Syst 2023; 33:2350022. [PMID: 36916993 PMCID: PMC10561898 DOI: 10.1142/s0129065723500223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrical stimulation of the peripheral nervous system is a promising therapeutic option for several conditions; however, its effects on tissue and the safety of the stimulation remain poorly understood. In order to devise stimulation protocols that enhance therapeutic efficacy without the risk of causing tissue damage, we constructed computational models of peripheral nerve and stimulation cuffs based on extremely high-resolution cross-sectional images of the nerves using the most recent advances in computing power and machine learning techniques. We developed nerve models using nonstimulated (healthy) and over-stimulated (damaged) rat sciatic nerves to explore how nerve damage affects the induced current density distribution. Using our in-house computational, quasi-static, platform, and the Admittance Method (AM), we estimated the induced current distribution within the nerves and compared it for healthy and damaged nerves. We also estimated the extent of localized cell damage in both healthy and damaged nerve samples. When the nerve is damaged, as demonstrated principally by the decreased nerve fiber packing, the current penetrates deeper into the over-stimulated nerve than in the healthy sample. As safety limits for electrical stimulation of peripheral nerves still refer to the Shannon criterion to distinguish between safe and unsafe stimulation, the capability this work demonstrated is an important step toward the development of safety criteria that are specific to peripheral nerve and make use of the latest advances in computational bioelectromagnetics and machine learning, such as Python-based AM and CNN-based nerve image segmentation.
Collapse
|
20
|
Hermans T, Smets L, Lemmens K, Dereymaeker A, Jansen K, Naulaers G, Zappasodi F, Van Huffel S, Comani S, De Vos M. A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection. J Neural Eng 2023; 20. [PMID: 36791462 DOI: 10.1088/1741-2552/acbc4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Objective. Automated artefact detection in the neonatal electroencephalogram (EEG) is crucial for reliable automated EEG analysis, but limited availability of expert artefact annotations challenges the development of deep learning models for artefact detection. This paper proposes a semi-supervised deep learning approach for artefact detection in neonatal EEG that requires few labelled data by training a multi-task convolutional neural network (CNN).Approach. An unsupervised and a supervised objective were jointly optimised by combining an autoencoder and an artefact classifier in one multi-output model that processes multi-channel EEG inputs. The proposed semi-supervised multi-task training strategy was compared to a classical supervised strategy and other existing state-of-the-art models. The models were trained and tested separately on two different datasets, which contained partially annotated multi-channel neonatal EEG. Models were evaluated using the F1-statistic and the relevance of the method was investigated in the context of a functional brain age (FBA) prediction model.Main results. The proposed multi-task and multi-channel CNN methods outperformed state-of-the-art methods, reaching F1 scores of 86.2% and 95.7% on two separate datasets. The proposed semi-supervised multi-task training strategy was shown to be superior to a classical supervised training strategy when the amount of labels in the dataset was artificially reduced. Finally, we found that the error of a brain age prediction model correlated with the amount of automatically detected artefacts in the EEG segment.Significance. Our results show that the proposed semi-supervised multi-task training strategy can train CNNs successfully even when the amount of labels in the dataset is limited. Therefore, this method is a promising semi-supervised technique for developing deep learning models with scarcely labelled data. Moreover, a correlation between the error of FBA estimates and the amount of detected artefacts in the corresponding EEG segments indicates the relevance of artefact detection for robust automated EEG analysis.
Collapse
Affiliation(s)
- Tim Hermans
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Laura Smets
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.,Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Katrien Lemmens
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neonatal Intensive Care Unit, UZ Leuven, Leuven, Belgium
| | - Anneleen Dereymaeker
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neonatal Intensive Care Unit, UZ Leuven, Leuven, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Child Neurology, UZ Leuven, Leuven, Belgium
| | - Gunnar Naulaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neonatal Intensive Care Unit, UZ Leuven, Leuven, Belgium
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Behavioral Imaging and Neural Dynamics Center, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Silvia Comani
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Behavioral Imaging and Neural Dynamics Center, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maarten De Vos
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Peh WY, Thangavel P, Yao Y, Thomas J, Tan YL, Dauwels J. Six-Center Assessment of CNN-Transformer with Belief Matching Loss for Patient-Independent Seizure Detection in EEG. Int J Neural Syst 2023; 33:2350012. [PMID: 36809996 DOI: 10.1142/s0129065723500120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurologists typically identify epileptic seizures from electroencephalograms (EEGs) by visual inspection. This process is often time-consuming, especially for EEG recordings that last hours or days. To expedite the process, a reliable, automated, and patient-independent seizure detector is essential. However, developing a patient-independent seizure detector is challenging as seizures exhibit diverse characteristics across patients and recording devices. In this study, we propose a patient-independent seizure detector to automatically detect seizures in both scalp EEG and intracranial EEG (iEEG). First, we deploy a convolutional neural network with transformers and belief matching loss to detect seizures in single-channel EEG segments. Next, we extract regional features from the channel-level outputs to detect seizures in multi-channel EEG segments. At last, we apply post-processing filters to the segment-level outputs to determine seizures' start and end points in multi-channel EEGs. Finally, we introduce the minimum overlap evaluation scoring as an evaluation metric that accounts for minimum overlap between the detection and seizure, improving upon existing assessment metrics. We trained the seizure detector on the Temple University Hospital Seizure (TUH-SZ) dataset and evaluated it on five independent EEG datasets. We evaluate the systems with the following metrics: sensitivity (SEN), precision (PRE), and average and median false positive rate per hour (aFPR/h and mFPR/h). Across four adult scalp EEG and iEEG datasets, we obtained SEN of 0.617-1.00, PRE of 0.534-1.00, aFPR/h of 0.425-2.002, and mFPR/h of 0-1.003. The proposed seizure detector can detect seizures in adult EEGs and takes less than 15[Formula: see text]s for a 30[Formula: see text]min EEG. Hence, this system could aid clinicians in reliably identifying seizures expeditiously, allocating more time for devising proper treatment.
Collapse
Affiliation(s)
- Wei Yan Peh
- Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore 639798, Singapore
| | - Prasanth Thangavel
- Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore 639798, Singapore
| | - Yuanyuan Yao
- Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - John Thomas
- Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada
| | - Yee-Leng Tan
- National Neuroscience Institute, Singapore 308433, Singapore
| | - Justin Dauwels
- Department of Microelectronics, Delft, University of Technology, 2628 CD Delft, Netherlands
| |
Collapse
|
22
|
Singh YP, Lobiyal D. Automatic prediction of epileptic seizure using hybrid deep ResNet-LSTM model. AI COMMUN 2023. [DOI: 10.3233/aic-220177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous advanced data processing and machine learning techniques for identifying epileptic seizures have been developed in the last two decades. Nonetheless, many of these solutions need massive data sets and intricate computations. Our approach transforms electroencephalogram (EEG) data into the time-frequency domain by utilizing a short-time fourier transform (STFT) and the spectrogram (t-f) images as the input stage of the deep learning model. Using EEG data, we have constructed a hybrid model comprising of a Deep Convolution Network (ResNet50) and a Long Short-Term Memory (LSTM) for predicting epileptic seizures. Spectrogram images are used to train the proposed hybrid model for feature extraction and classification. We analyzed the CHB-MIT scalp EEG dataset. For each preictal period of 5, 15, and 30 minutes, experiments are conducted to evaluate the performance of the proposed model. The experimental results indicate that the proposed model produced the optimum performance with a 5-minute preictal duration. We achieved an average accuracy of 94.5%, the average sensitivity of 93.7%, the f1-score of 0.9376, and the average false positive rate (FPR) of 0.055. Our proposed technique surpassed the random predictor and other current algorithms used for seizure prediction for all patients’ data in the dataset. One can use the effectiveness of our proposed model to help in the early diagnosis of epilepsy and provide early treatment.
Collapse
Affiliation(s)
| | - D.K. Lobiyal
- School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
23
|
Selcuk Nogay H, Adeli H. Diagnostic of autism spectrum disorder based on structural brain MRI images using, grid search optimization, and convolutional neural networks. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Sun H, Li C, Zhang H. Design of virtual BCI channels based on informer. Front Hum Neurosci 2023; 17:1150316. [PMID: 37169016 PMCID: PMC10165084 DOI: 10.3389/fnhum.2023.1150316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
The precision and reliability of electroencephalogram (EEG) data are essential for the effective functioning of a brain-computer interface (BCI). As the number of BCI acquisition channels increases, more EEG information can be gathered. However, having too many channels will reduce the practicability of the BCI system, raise the likelihood of poor-quality channels, and lead to information misinterpretation. These issues pose challenges to the advancement of BCI systems. Determining the optimal configuration of BCI acquisition channels can minimize the number of channels utilized, but it is challenging to maintain the original operating system and accommodate individual variations in channel layout. To address these concerns, this study introduces the EEG-completion-informer (EC-informer), which is based on the Informer architecture known for its effectiveness in time-series problems. By providing input from four BCI acquisition channels, the EC-informer can generate several virtual acquisition channels to extract additional EEG information for analysis. This approach allows for the direct inheritance of the original model, significantly reducing researchers' workload. Moreover, EC-informers demonstrate strong performance in damaged channel repair and poor channel identification. Using the Informer as a foundation, the study proposes the EC-informer, tailored to BCI requirements and demanding only a small number of training samples. This approach eliminates the need for extensive computing units to train an efficient, lightweight model while preserving comprehensive information about target channels. The study also confirms that the proposed model can be transferred to other operators with minimal loss, exhibiting robust applicability. The EC-informer's features enable original BCI devices to adapt to a broader range of classification algorithms and relax the operational requirements of BCI devices, which could facilitate the promotion of the use of BCI devices in daily life.
Collapse
|
25
|
Nafea MS, Ismail ZH. Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals-A Systematic Literature Review. Bioengineering (Basel) 2022; 9:781. [PMID: 36550987 PMCID: PMC9774931 DOI: 10.3390/bioengineering9120781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
Electroencephalography (EEG) is a complicated, non-stationary signal that requires extensive preprocessing and feature extraction approaches to be accurately analyzed. In recent times, Deep learning (DL) has shown great promise in exploiting the characteristics of EEG signals as it can learn relevant features from raw data autonomously. Although studies involving DL have become more common in the last two years, the topic of whether DL truly delivers advantages over conventional Machine learning (ML) methodologies remains unsettled. This study aims to present a detailed overview of the main challenges in the field of seizure detection, prediction, and classification utilizing EEG data, and the approaches taken to solve them using ML and DL methods. A systematic review was conducted surveying peer-reviewed publications published between 2017 and 16 July 2022 using two scientific databases (Web of Science and Scopus) totaling 6822 references after discarding duplicate publications. Whereas 2262 articles were screened based on the title, abstract, and keywords, only 214 were eligible for full-text assessment. A total of 91 papers have been included in this survey after meeting the eligible inclusion and exclusion criteria. The most significant findings from the review are summarized, and several important concepts involving ML and DL for seizure detection, prediction, and classification are discussed in further depth. This review aims to learn more about the different approaches for identifying different types and stages of epileptic seizures, which may then be employed to enhance the lives of epileptic patients in the future, as well as aid experts in the field.
Collapse
Affiliation(s)
- Mohamed Sami Nafea
- Computer Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Cairo 2033, Egypt
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Zool Hilmi Ismail
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
26
|
El-Dib M, Abend NS, Austin T, Boylan G, Chock V, Cilio MR, Greisen G, Hellström-Westas L, Lemmers P, Pellicer A, Pressler RM, Sansevere A, Tsuchida T, Vanhatalo S, Wusthoff CJ, Wintermark P, Aly H, Chang T, Chau V, Glass H, Lemmon M, Massaro A, Wusthoff C, deVeber G, Pardo A, McCaul MC. Neuromonitoring in neonatal critical care part I: neonatal encephalopathy and neonates with possible seizures. Pediatr Res 2022:10.1038/s41390-022-02393-1. [PMID: 36476747 DOI: 10.1038/s41390-022-02393-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022]
Abstract
The blooming of neonatal neurocritical care over the last decade reflects substantial advances in neuromonitoring and neuroprotection. The most commonly used brain monitoring tools in the neonatal intensive care unit (NICU) are amplitude integrated EEG (aEEG), full multichannel continuous EEG (cEEG), and near-infrared spectroscopy (NIRS). While some published guidelines address individual tools, there is no consensus on consistent, efficient, and beneficial use of these modalities in common NICU scenarios. This work reviews current evidence to assist decision making for best utilization of neuromonitoring modalities in neonates with encephalopathy or with possible seizures. Neuromonitoring approaches in extremely premature and critically ill neonates are discussed separately in the companion paper. IMPACT: Neuromonitoring techniques hold promise for improving neonatal care. For neonatal encephalopathy, aEEG can assist in screening for eligibility for therapeutic hypothermia, though should not be used to exclude otherwise eligible neonates. Continuous cEEG, aEEG and NIRS through rewarming can assist in prognostication. For neonates with possible seizures, cEEG is the gold standard for detection and diagnosis. If not available, aEEG as a screening tool is superior to clinical assessment alone. The use of seizure detection algorithms can help with timely seizures detection at the bedside.
Collapse
Affiliation(s)
- Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nicholas S Abend
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Geraldine Boylan
- INFANT Research Centre & Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Valerie Chock
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - M Roberta Cilio
- Department of Pediatrics, Division of Pediatric Neurology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Gorm Greisen
- Department of Neonatology, Rigshospitalet, Copenhagen University Hospital & Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lena Hellström-Westas
- Department of Women's and Children's Health, Uppsala University, and Division of Neonatology, Uppsala University Hospital, Uppsala, Sweden
| | - Petra Lemmers
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital, Madrid, Spain; Neonatology Group, IdiPAZ, Madrid, Spain
| | - Ronit M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, and Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK
| | - Arnold Sansevere
- Department of Neurology and Pediatrics, George Washington University School of Medicine and Health Sciences; Children's National Hospital Division of Neurophysiology, Epilepsy and Critical Care, Washington, DC, USA
| | - Tammy Tsuchida
- Department of Neurology and Pediatrics, George Washington University School of Medicine and Health Sciences; Children's National Hospital Division of Neurophysiology, Epilepsy and Critical Care, Washington, DC, USA
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, Children's Hospital, BABA Center, Neuroscience Center/HILIFE, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Montazeri S, Nevalainen P, Stevenson NJ, Vanhatalo S. Sleep State Trend (SST), a bedside measure of neonatal sleep state fluctuations based on single EEG channels. Clin Neurophysiol 2022; 143:75-83. [PMID: 36155385 DOI: 10.1016/j.clinph.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To develop and validate an automated method for bedside monitoring of sleep state fluctuations in neonatal intensive care units. METHODS A deep learning-based algorithm was designed and trained using 53 EEG recordings from a long-term (a)EEG monitoring in 30 near-term neonates. The results were validated using an independent dataset from 30 polysomnography recordings. In addition, we constructed Sleep State Trend (SST), a bedside-ready means for visualizing classifier outputs. RESULTS The accuracy of quiet sleep detection in the training data was 90%, and the accuracy was comparable (85-86 %) in all bipolar derivations available from the 4-electrode recordings. The algorithm generalized well to a polysomnography dataset, showing 81% overall accuracy despite different signal derivations. SST allowed an intuitive, clear visualization of the classifier output. CONCLUSIONS Fluctuations in sleep states can be detected at high fidelity from a single EEG channel, and the results can be visualized as a transparent and intuitive trend in the bedside monitors. SIGNIFICANCE The Sleep State Trend (SST) may provide caregivers and clinical studies a real-time view of sleep state fluctuations and its cyclicity.
Collapse
Affiliation(s)
- Saeed Montazeri
- BABA Center, Department of Clinical Neurophysiology, HUS diagnostic center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physiology, University of Helsinki, Helsinki, Finland.
| | - Päivi Nevalainen
- BABA Center, Department of Clinical Neurophysiology, HUS diagnostic center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nathan J Stevenson
- Brain Modeling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sampsa Vanhatalo
- BABA Center, Department of Clinical Neurophysiology, HUS diagnostic center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Physiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
XAI4EEG: spectral and spatio-temporal explanation of deep learning-based seizure detection in EEG time series. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractIn clinical practice, algorithmic predictions may seriously jeopardise patients’ health and thus are required to be validated by medical experts before a final clinical decision is met. Towards that aim, there is need to incorporate explainable artificial intelligence techniques into medical research. In the specific field of epileptic seizure detection there are several machine learning algorithms but less methods on explaining them in an interpretable way. Therefore, we introduce XAI4EEG: an application-aware approach for an explainable and hybrid deep learning-based detection of seizures in multivariate EEG time series. In XAI4EEG, we combine deep learning models and domain knowledge on seizure detection, namely (a) frequency bands, (b) location of EEG leads and (c) temporal characteristics. XAI4EEG encompasses EEG data preparation, two deep learning models and our proposed explanation module visualizing feature contributions that are obtained by two SHAP explainers, each explaining the predictions of one of the two models. The resulting visual explanations provide an intuitive identification of decision-relevant regions in the spectral, spatial and temporal EEG dimensions. To evaluate XAI4EEG, we conducted a user study, where users were asked to assess the outputs of XAI4EEG, while working under time constraints, in order to emulate the fact that clinical diagnosis is done - more often than not - under time pressure. We found that the visualizations of our explanation module (1) lead to a substantially lower time for validating the predictions and (2) leverage an increase in interpretability, trust and confidence compared to selected SHAP feature contribution plots.
Collapse
|
29
|
Zhao M, Li J, Xiang L, Zhang ZH, Peng SL. A diagnosis model of dementia via machine learning. Front Aging Neurosci 2022; 14:984894. [PMID: 36158565 PMCID: PMC9490175 DOI: 10.3389/fnagi.2022.984894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
As the aging population poses serious challenges to families and societies, the issue of dementia has also received increasing attention. Dementia detection often requires a series of complex tests and lengthy questionnaires, which are time-consuming. In order to solve this problem, this article aims at the diagnosis method of questionnaire survey, hoping to establish a diagnosis model to help doctors make a diagnosis through machine learning method, and use feature selection method to select important questions to reduce the number of questions in the questionnaire, so as to reduce medical and time costs. In this article, Clinical Dementia Rating (CDR) is used as the data source, and various methods are used for modeling and feature selection, so as to combine similar attributes in the data set, reduce the categories, and finally use the confusion matrix to judge the effect. The experimental results show that the model established by the bagging method has the best effect, and the accuracy rate can reach 80% of the true diagnosis rate; in terms of feature selection, the principal component analysis (PCA) has the best effect compared with other methods.
Collapse
Affiliation(s)
- Ming Zhao
- School of Computer Science, Yangtze University, Jingzhou, China
| | - Jie Li
- School of Computer Science, Yangtze University, Jingzhou, China
| | - Liuqing Xiang
- School of Computer Science, Yangtze University, Jingzhou, China
| | - Zu-hai Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- *Correspondence: Zu-hai Zhang,
| | - Sheng-Lung Peng
- Department of Creative Technologies and Product Design, National Taipei University of Business, Taipei, Taiwan
| |
Collapse
|
30
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
31
|
A seizure detection method based on hypergraph features and machine learning. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
N.J. S, M.S.P. S, S. TG. EEG-based classification of normal and seizure types using relaxed local neighbour difference pattern and artificial neural network. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Raeisi K, Khazaei M, Croce P, Tamburro G, Comani S, Zappasodi F. A graph convolutional neural network for the automated detection of seizures in the neonatal EEG. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106950. [PMID: 35717740 DOI: 10.1016/j.cmpb.2022.106950] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Neonatal seizures are the most common clinical presentation of neurological conditions and can have adverse effects on the neurodevelopment of the neonatal brain. Visual detection of these events from continuous EEG recordings is a laborious and time-consuming task. We propose a novel algorithm for the automated detection of neonatal seizures. METHODS In this study, we propose a novel deep learning model based on Graph Convolutional Neural Networks for the automated detection of neonatal seizures. Unlike other methods exploiting mainly the temporal information contained in EEG signals, our method also considers long-range spatial information, i.e., the interdependencies across EEG signals. The temporal information is embedded as graph signals in the graph representation of the EEG recordings and includes EEG features extracted from the EEG signals in the time and frequency domains. The spatial information is represented as functional connections among the EEG channels (calculated by the phase-locking value and the mean squared coherence) or as maps of Euclidean distances. These different spatial representations were evaluated to assess their efficiency in providing more discriminative features for an effective detection of neonatal seizures. The model performance was assessed on a publicly available dataset of continuous EEG signals recorded from 39 neonates by means of the area under the curve (AUC) and the AUC for specificity values greater than 90% (AUC90). RESULTS After applying post-processing, consisting in smoothing the output of the classifiers, the models based on the mean squared coherence, the phase-locking value, and the Euclidean distance respectively reached a median AUC of 99.1% (IQR: 96.8%-99.6%), 99% (IQR: 95.2%-99.7%), and 97.3% (IQR: 86.3%-99.6%), and a median AUC90 of 96%, 95.7%, and 94.9%. These values are superior or comparable to those reached by methods considered as state-of-the-art in this field. CONCLUSIONS Our results show that the EEG graph representations drawn from functional connectivity measures can effectively leverage interdependencies among EEG signals and lead to reliable detection of neonatal seizures. Furthermore, our model has the advantage of requiring only temporal annotations on seizures for the training phase, making it more appealing for clinical applications.
Collapse
Affiliation(s)
- Khadijeh Raeisi
- Department of Neuroscience, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Mohammad Khazaei
- Department of Neuroscience, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy; Behavioral Imaging and Neural Dynamics Center, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gabriella Tamburro
- Department of Neuroscience, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy; Behavioral Imaging and Neural Dynamics Center, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Silvia Comani
- Department of Neuroscience, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy; Behavioral Imaging and Neural Dynamics Center, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy; Behavioral Imaging and Neural Dynamics Center, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
34
|
Tapani KT, Nevalainen P, Vanhatalo S, Stevenson NJ. Validating an SVM-based neonatal seizure detection algorithm for generalizability, non-inferiority and clinical efficacy. Comput Biol Med 2022; 145:105399. [DOI: 10.1016/j.compbiomed.2022.105399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
|
35
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
36
|
Li M, Wu L, Xu G, Duan F, Zhu C. A Robust 3D-Convolutional Neural Network- based Electroencephalogram Decoding Model for the Intra-Individual Difference. Int J Neural Syst 2022; 32:2250034. [DOI: 10.1142/s0129065722500344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Lian J, Xu F. Spatial Enhanced Pattern Through Graph Convolutional Neural Network for Epileptic EEG Identification. Int J Neural Syst 2022; 32:2250033. [DOI: 10.1142/s0129065722500332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
De Nardin A, Mishra P, Foresti GL, Piciarelli C. Masked Transformer for image Anomaly Localization. Int J Neural Syst 2022; 32:2250030. [DOI: 10.1142/s0129065722500307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Variane GFT, Camargo JPV, Rodrigues DP, Magalhães M, Mimica MJ. Current Status and Future Directions of Neuromonitoring With Emerging Technologies in Neonatal Care. Front Pediatr 2022; 9:755144. [PMID: 35402367 PMCID: PMC8984110 DOI: 10.3389/fped.2021.755144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatology has experienced a significant reduction in mortality rates of the preterm population and critically ill infants over the last few decades. Now, the emphasis is directed toward improving long-term neurodevelopmental outcomes and quality of life. Brain-focused care has emerged as a necessity. The creation of neonatal neurocritical care units, or Neuro-NICUs, provides strategies to reduce brain injury using standardized clinical protocols, methodologies, and provider education and training. Bedside neuromonitoring has dramatically improved our ability to provide assessment of newborns at high risk. Non-invasive tools, such as continuous electroencephalography (cEEG), amplitude-integrated electroencephalography (aEEG), and near-infrared spectroscopy (NIRS), allow screening for seizures and continuous evaluation of brain function and cerebral oxygenation at the bedside. Extended and combined uses of these techniques, also described as multimodal monitoring, may allow practitioners to better understand the physiology of critically ill neonates. Furthermore, the rapid growth of technology in the Neuro-NICU, along with the increasing use of telemedicine and artificial intelligence with improved data mining techniques and machine learning (ML), has the potential to vastly improve decision-making processes and positively impact outcomes. This article will cover the current applications of neuromonitoring in the Neuro-NICU, recent advances, potential pitfalls, and future perspectives in this field.
Collapse
Affiliation(s)
- Gabriel Fernando Todeschi Variane
- Division of Neonatology, Department of Pediatrics, Irmandade de Misericordia da Santa Casa de São Paulo, São Paulo, Brazil
- Clinical Research Department, Protecting Brains and Saving Futures Organization, São Paulo, Brazil
- Division of Neonatology, Grupo Santa Joana, São Paulo, Brazil
| | - João Paulo Vasques Camargo
- Clinical Research Department, Protecting Brains and Saving Futures Organization, São Paulo, Brazil
- Data Science Department, OPD Team, São Paulo, Brazil
| | - Daniela Pereira Rodrigues
- Clinical Research Department, Protecting Brains and Saving Futures Organization, São Paulo, Brazil
- Pediatric Nursing Department, Escola Paulista de Enfermagem, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maurício Magalhães
- Division of Neonatology, Department of Pediatrics, Irmandade de Misericordia da Santa Casa de São Paulo, São Paulo, Brazil
- Clinical Research Department, Protecting Brains and Saving Futures Organization, São Paulo, Brazil
- Department of Pediatrics, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Marcelo Jenné Mimica
- Department of Pathology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Martin JR, Gabriel P, Gold J, Haas R, Davis S, Gonda D, Sharpe C, Wilson S, Nierenberg N, Scheuer M, Wang S. Optical Flow Estimation Improves Automated Seizure Detection in Neonatal EEG. J Clin Neurophysiol 2022; 39:235-239. [PMID: 32810002 PMCID: PMC7887141 DOI: 10.1097/wnp.0000000000000767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Existing automated seizure detection algorithms report sensitivities between 43% and 77% and specificities between 56% and 90%. The algorithms suffer from false alarms when applied to neonatal EEG because of the high degree of nurse handling and rhythmic patting used to soothe neonates. Computer vision technology that quantifies movement in real time could distinguish artifactual motion and improve automated neonatal seizure detection algorithms. METHODS The authors used video EEG recordings from 43 neonates undergoing monitoring for seizures as part of the NEOLEV2 clinical trial. The Persyst neonatal automated seizure detection algorithm ran in real time during study EEG acquisitions. Computer vision algorithms were applied to extract detailed accounts of artifactual movement of the neonate or people near the neonate though dense optical flow estimation. RESULTS Using the methods mentioned above, 197 periods of patting activity were identified and quantified, of which 45 generated false-positive automated seizure detection events. A binary patting detection algorithm was trained with a subset of 470 event videos. This supervised detection algorithm was applied to a testing subset of 187 event videos with 8 false-positive events, which resulted in a 24% reduction in false-positive automated seizure detections and a 50% reduction in false-positive events caused by neonatal care patting, while maintaining 11 of 12 true-positive seizure detection events. CONCLUSIONS This work presents a novel approach to improving automated seizure detection algorithms used during neonatal video EEG monitoring. This artifact detection mechanism can improve the ability of a seizure detector algorithm to distinguish between artifact and true seizure activity.
Collapse
Affiliation(s)
- Joel R Martin
- Department of Electrical Engineering, University of California, San Diego, La Jolla, CA
| | - Paolo Gabriel
- Department of Electrical Engineering, University of California, San Diego, La Jolla, CA
| | - Jeffrey Gold
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Richard Haas
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Sue Davis
- Auckland District Health Board, Auckland, New Zealand
| | - David Gonda
- Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Cia Sharpe
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | | | | | | | - Sonya Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
41
|
A novel hybrid soft computing optimization framework for dynamic economic dispatch problem of complex non-convex contiguous constrained machines. PLoS One 2022; 17:e0261709. [PMID: 35081127 PMCID: PMC8791528 DOI: 10.1371/journal.pone.0261709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
The reformations of the electrical power sector have resulted in very dynamic and competitive market that has changed many elements of the power industry. Excessive demand of energy, depleting the fossil fuel reserves of planet and releasing the toxic air pollutant, has been causing harm to earth habitats. In this new situation, insufficiency of energy supplies, rising power generating costs, high capital cost of renewable energy equipment, environmental concerns of wind power turbines, and ever-increasing demand for electrical energy need efficient economic dispatch. The objective function in practical economic dispatch (ED) problem is nonlinear and non-convex, with restricted equality and inequality constraints, and traditional optimization methods are incapable of resolving such non-convex problems. Over the recent decade, meta-heuristic optimization approaches have acquired enormous reputation for obtaining a solution strategy for such types of ED issues. In this paper, a novel soft computing optimization technique is proposed for solving the dynamic economic dispatch problem (DEDP) of complex non-convex machines with several constraints. Our premeditated framework employs the genetic algorithm (GA) as an initial optimizer and sequential quadratic programming (SQP) for the fine tuning of the pre-optimized run of GA. The simulation analysis of GA-SQP performs well by acquiring less computational cost and finite time of execution, while providing optimal generation of powers according to the targeted power demand and load, whereas subject to valve point loading effect (VPLE) and multiple fueling option (MFO) constraints. The adequacy of the presented strategy concerning accuracy, convergence as well as reliability is verified by employing it on ten benchmark case studies, including non-convex IEEE bus system at the same time also considering VPLE of thermal power plants. The potency of designed optimization seems more robust with fast convergence rate while evaluating the hard bounded DEDP. Our suggested hybrid method GA-SQP converges to achieve the best optimal solution in a confined environment in a limited number of simulations. The simulation results demonstrate applicability and adequacy of the given hybrid schemes over conventional methods.
Collapse
|
42
|
Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
A Setup for Camera-Based Detection of Simulated Pathological States Using a Neonatal Phantom. SENSORS 2022; 22:s22030957. [PMID: 35161702 PMCID: PMC8838518 DOI: 10.3390/s22030957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Premature infants are among the most vulnerable patients in a hospital. Due to numerous complications associated with immaturity, a continuous monitoring of vital signs with a high sensitivity and accuracy is required. Today, wired sensors are attached to the patient's skin. However, adhesive electrodes can be potentially harmful as they can damage the very thin immature skin. Although unobtrusive monitoring systems using cameras show the potential to replace cable-based techniques, advanced image processing algorithms are data-driven and, therefore, need much data to be trained. Due to the low availability of public neonatal image data, a patient phantom could help to implement algorithms for the robust extraction of vital signs from video recordings. In this work, a camera-based system is presented and validated using a neonatal phantom, which enabled a simulation of common neonatal pathologies such as hypo-/hyperthermia and brady-/tachycardia. The implemented algorithm was able to continuously measure and analyze the heart rate via photoplethysmography imaging with a mean absolute error of 0.91 bpm, as well as the distribution of a neonate's skin temperature with a mean absolute error of less than 0.55 °C. For accurate measurements, a temperature gain offset correction on the registered image from two infrared thermography cameras was performed. A deep learning-based keypoint detector was applied for temperature mapping and guidance for the feature extraction. The presented setup successfully detected several levels of hypo- and hyperthermia, an increased central-peripheral temperature difference, tachycardia and bradycardia.
Collapse
|
44
|
Borovac A, Gudmundsson S, Thorvardsson G, Moghadam SM, Nevalainen P, Stevenson N, Vanhatalo S, Runarsson TP. Ensemble Learning Using Individual Neonatal Data for Seizure Detection. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:4901111. [PMID: 36147876 PMCID: PMC9484737 DOI: 10.1109/jtehm.2022.3201167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
Objective: Sharing medical data between institutions is difficult in practice due to data protection laws and official procedures within institutions. Therefore, most existing algorithms are trained on relatively small electroencephalogram (EEG) data sets which is likely to be detrimental to prediction accuracy. In this work, we simulate a case when the data can not be shared by splitting the publicly available data set into disjoint sets representing data in individual institutions. Methods and procedures: We propose to train a (local) detector in each institution and aggregate their individual predictions into one final prediction. Four aggregation schemes are compared, namely, the majority vote, the mean, the weighted mean and the Dawid-Skene method. The method was validated on an independent data set using only a subset of EEG channels. Results: The ensemble reaches accuracy comparable to a single detector trained on all the data when sufficient amount of data is available in each institution. Conclusion: The weighted mean aggregation scheme showed best performance, it was only marginally outperformed by the Dawid–Skene method when local detectors approach performance of a single detector trained on all available data. Clinical impact: Ensemble learning allows training of reliable algorithms for neonatal EEG analysis without a need to share the potentially sensitive EEG data between institutions.
Collapse
Affiliation(s)
- Ana Borovac
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
| | - Steinn Gudmundsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
| | | | - Saeed M. Moghadam
- Department of Physiology, BABA Center, Pediatric Research Center, University of Helsinki, Helsinki, Finland
| | - Paivi Nevalainen
- Department of Physiology, BABA Center, Pediatric Research Center, University of Helsinki, Helsinki, Finland
| | - Nathan Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sampsa Vanhatalo
- Department of Physiology, BABA Center, Pediatric Research Center, University of Helsinki, Helsinki, Finland
| | - Thomas P. Runarsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
45
|
Arco JE, Ortiz A, Ramírez J, Zhang YD, Górriz JM. Tiled Sparse Coding in Eigenspaces for Image Classification. Int J Neural Syst 2021; 32:2250007. [PMID: 34967705 DOI: 10.1142/s0129065722500071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The automation in the diagnosis of medical images is currently a challenging task. The use of Computer Aided Diagnosis (CAD) systems can be a powerful tool for clinicians, especially in situations when hospitals are overflowed. These tools are usually based on artificial intelligence (AI), a field that has been recently revolutionized by deep learning approaches. blackThese alternatives usually obtain a large performance based on complex solutions, leading to a high computational cost and the need of having large databases. In this work, we propose a classification framework based on sparse coding. Images are blackfirst partitioned into different tiles, and a dictionary is built after applying PCA to these tiles. The original signals are then transformed as a linear combination of the elements of the dictionary. blackThen, they are reconstructed by iteratively deactivating the elements associated with each component. Classification is finally performed employing as features the subsequent reconstruction errors. Performance is evaluated in a real context where distinguishing between four different pathologies: control versus bacterial pneumonia versus viral pneumonia versus COVID-19. blackOur system differentiates between pneumonia patients and controls with an accuracy of 97.74%, whereas in the 4-class context the accuracy is 86.73%. The excellent results and the pioneering use of sparse coding in this scenario evidence that our proposal can assist clinicians when their workload is high.
Collapse
Affiliation(s)
- Juan E Arco
- Department of Signal Theory, Networking and Communications, University of Granada 18010, Spain.,Andalusian Research Institute in Data, Science and Computational Intelligence, Spain
| | - Andrés Ortiz
- Department of Communications Engineering, University of Malaga 29010, Spain.,Andalusian Research Institute in Data, Science and Computational Intelligence, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada 18010, Spain.,Andalusian Research Institute in Data, Science and Computational Intelligence, Spain
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester LE1 7RH, UK
| | - Juan M Górriz
- Department of Signal Theory, Networking and Communications, University of Granada 18010, Spain.,Andalusian Research Institute in Data, Science and Computational Intelligence, Spain
| |
Collapse
|
46
|
Brogin JAF, Faber J, Bueno DD. Burster Reconstruction Considering Unmeasurable Variables in the Epileptor Model. Neural Comput 2021; 33:3288-3333. [PMID: 34710900 DOI: 10.1162/neco_a_01443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/14/2021] [Indexed: 11/04/2022]
Abstract
Epilepsy is one of the most common brain disorders worldwide, affecting millions of people every year. Although significant effort has been put into better understanding it and mitigating its effects, the conventional treatments are not fully effective. Advances in computational neuroscience, using mathematical dynamic models that represent brain activities at different scales, have enabled addressing epilepsy from a more theoretical standpoint. In particular, the recently proposed Epileptor model stands out among these models, because it represents well the main features of seizures, and the results from its simulations have been consistent with experimental observations. In addition, there has been an increasing interest in designing control techniques for Epileptor that might lead to possible realistic feedback controllers in the future. However, such approaches rely on knowing all of the states of the model, which is not the case in practice. The work explored in this letter aims to develop a state observer to estimate Epileptor's unmeasurable variables, as well as reconstruct the respective so-called bursters. Furthermore, an alternative modeling is presented for enhancing the convergence speed of an observer. The results show that the proposed approach is efficient under two main conditions: when the brain is undergoing a seizure and when a transition from the healthy to the epileptiform activity occurs.
Collapse
Affiliation(s)
- João Angelo Ferres Brogin
- Department of Mechanical Engineering, School of Engineering of Ilha Solteira, São Paulo State University, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Jean Faber
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, 04039-032, Brazil
| | - Douglas Domingues Bueno
- Department of Mathematics, São Paulo State University, School of Engineering of Ilha Solteira, São Paulo, 15385-000, Brazil
| |
Collapse
|
47
|
Sandoval Karamian AG, Wusthoff CJ. Current and Future Uses of Continuous EEG in the NICU. Front Pediatr 2021; 9:768670. [PMID: 34805053 PMCID: PMC8595393 DOI: 10.3389/fped.2021.768670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Continuous EEG (cEEG) is a fundamental neurodiagnostic tool in the care of critically ill neonates and is increasingly recommended. cEEG enhances prognostication via assessment of the background brain activity, plays a role in predicting which neonates are at risk for seizures when combined with clinical factors, and allows for accurate diagnosis and management of neonatal seizures. Continuous EEG is the gold standard method for diagnosis of neonatal seizures and should be used for detection of seizures in high-risk clinical conditions, differential diagnosis of paroxysmal events, and assessment of response to treatment. High costs associated with cEEG are a limiting factor in its widespread implementation. Centralized remote cEEG interpretation, automated seizure detection, and pre-natal EEG are potential future applications of this neurodiagnostic tool.
Collapse
Affiliation(s)
| | - Courtney J. Wusthoff
- Division of Child Neurology, Lucile Packard Children's Hospital at Stanford, Palo Alto, CA, United States
| |
Collapse
|
48
|
Feng N, Hu F, Wang H, Zhou B. Motor Intention Decoding from the Upper Limb by Graph Convolutional Network Based on Functional Connectivity. Int J Neural Syst 2021; 31:2150047. [PMID: 34693880 DOI: 10.1142/s0129065721500477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Decoding brain intention from noninvasively measured neural signals has recently been a hot topic in brain-computer interface (BCI). The motor commands about the movements of fine parts can increase the degrees of freedom under control and be applied to external equipment without stimulus. In the decoding process, the classifier is one of the key factors, and the graph information of the EEG was ignored by most researchers. In this paper, a graph convolutional network (GCN) based on functional connectivity was proposed to decode the motor intention of four fine parts movements (shoulder, elbow, wrist, hand). First, event-related desynchronization was analyzed to reveal the differences between the four classes. Second, functional connectivity was constructed by using synchronization likelihood (SL), phase-locking value (PLV), H index (H), mutual information (MI), and weighted phase-lag index (WPLI) to acquire the electrode pairs with a difference. Subsequently, a GCN and convolutional neural networks (CNN) were performed based on functional topological structures and time points, respectively. The results demonstrated that the proposed method achieved a decoding accuracy of up to 92.81% in the four-class task. Besides, the combination of GCN and functional connectivity can promote the development of BCI.
Collapse
Affiliation(s)
- Naishi Feng
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Fo Hu
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Hong Wang
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Bin Zhou
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
49
|
Wang X, Zhang G, Wang Y, Yang L, Liang Z, Cong F. One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG. Int J Neural Syst 2021; 32:2150048. [PMID: 34635034 DOI: 10.1142/s0129065721500489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific model was trained. Finally, the channel form with the best classification was selected for each patient. The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure occurrence period (SOP) of 30[Formula: see text]min and seizure prediction horizon (SPH) of 5[Formula: see text]min, 98.60[Formula: see text] accuracy, 98.85[Formula: see text] sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60[Formula: see text]min and SPH of 5[Formula: see text]min, 98.32[Formula: see text] accuracy, 98.48[Formula: see text] sensitivity and 0.01/h FPR were attained. Compared with the many existing methods using the same iEEG dataset, our method showed a better performance.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Guanghui Zhang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Ying Wang
- Department of Neurology and Psychiatry, First Affiliated Hospital, DaLian Medical University, Dalian, P. R. China
| | - Lin Yang
- Department of Neurology and Psychiatry, First Affiliated Hospital, DaLian Medical University, Dalian, P. R. China
| | - Zhanhua Liang
- Department of Neurology and Psychiatry, First Affiliated Hospital, DaLian Medical University, Dalian, P. R. China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Faculty of Information Technology, University of Jyväskylä, Jyväskylä 40014, Finland.,School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Key Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|
50
|
Automatic detection for epileptic seizure using graph-regularized nonnegative matrix factorization and Bayesian linear discriminate analysis. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|