1
|
Beazley C, Giannoni S, Ionta S. Body-Related Visual Biasing Affects Accuracy of Reaching. Brain Sci 2024; 14:1270. [PMID: 39766469 PMCID: PMC11675064 DOI: 10.3390/brainsci14121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Many daily activities depend on visual inputs to improve motor accuracy and minimize errors. Reaching tasks present an ecological framework for examining these visuomotor interactions, but our comprehension of how different amounts of visual input affect motor outputs is still limited. The present study fills this gap, exploring how hand-related visual bias affects motor performance in a reaching task (to draw a line between two dots). Methods: Our setup allowed us to show and hide the visual feedback related to the hand position (cursor of a computer mouse), which was further disentangled from the visual input related to the task (tip of the line). Results: Data from 53 neurotypical participants indicated that, when the hand-related visual cue was visible and disentangled from the task-related visual cue, accommodating movements in response to spatial distortions were less accurate than when the visual cue was absent. Conclusions: We interpret these findings with reference to the concepts of motor affordance of visual cues, shifts between internally- and externally-oriented cognitive strategies to perform movements, and body-related reference frames.
Collapse
Affiliation(s)
- Claude Beazley
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
| | - Stefano Giannoni
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
| | - Silvio Ionta
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
- Centre de compétences pour le déficit visuel (CPHV), 1004 Lausanne, Switzerland
| |
Collapse
|
2
|
Feng S, Hong S, Zhang X, Wang X, Chen L. The impact of task difficulty on neural modulation throughout a visuomotor multi-day practice training. Brain Res Bull 2024; 219:111124. [PMID: 39537110 DOI: 10.1016/j.brainresbull.2024.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The effectiveness of rehabilitation is contingent upon the motor recovery process which typically involves long-term motor skill re-acquisition. Given that the learning process can be modulated by task difficulty, elucidating the underlying neural mechanism is essential for optimizing rehabilitation prescription to suit different patient conditions. This study aimed to investigate the impact of task difficulty on cortical response during force-control training via electroencephalography (EEG). An 8-day visuomotor force-tracking training experiment was conducted. Healthy right-handed participants (N=33) were recruited and randomly assigned to 3 groups, and each group was tasked with a different level of difficulty. The task difficulty was manipulated by variation in force-production complexity and execution sequence assignments, with real-time visual feedback provided to participants for self-output adjustment. Behavioral performance was quantitatively assessed using a pre-defined score metric related to performance accuracy. The EEG signals were collected, and corresponding event-related desynchronization (ERD) and relative functional connectivity (FC) during the task execution were analyzed within the alpha- (8-13 Hz) and beta- (15-30 Hz) bands. A post-training experiment was also performed to evaluate the near-transfer capability of learning. Results showed all the behavioral performances improved during practice, while higher task difficulty level was affiliated with better post-training near-transfer ability. The dynamic neural response to training could be mediated by changes in difficulty level, where increased task complexity corresponded with the heightened activities in the beta-band priorly within the right dorsolateral prefrontal area. Additionally, stronger alpha-band functional connectivity was observed to be predominantly associated with the left motor area (LMA) during challenging tasks, and the intensification in connectivity persisted selectively post-training which appeared to be acritical factor for skill transfer performance improvement. These findings illustrated the dynamic neural mechanism through which task difficulty affects behavioral performance during long-term motor training with accurate force-control purpose. The selectively strengthened functional connectivity may contribute to facilitating new task execution after training interventions. Therefore, beneficial neural modulation can be expected to be feasible by well-designed task difficulty strategies for effective motor rehabilitation.
Collapse
Affiliation(s)
- Shuai Feng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Siyu Hong
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xin Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Lin Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, China.
| |
Collapse
|
3
|
Moaveninejad S, D'Onofrio V, Tecchio F, Ferracuti F, Iarlori S, Monteriù A, Porcaro C. Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107944. [PMID: 38064955 DOI: 10.1016/j.cmpb.2023.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND OBJECTIVE The brain-computer interface (BCI) technology acquires human brain electrical signals, which can be effectively and successfully used to control external devices, potentially supporting subjects suffering from motor impairments in the interaction with the environment. To this aim, BCI systems must correctly decode and interpret neurophysiological signals reflecting the intention of the subjects to move. Therefore, the accurate classification of single events in motor tasks represents a fundamental challenge in ensuring efficient communication and control between users and BCIs. Movement-associated changes in electroencephalographic (EEG) sensorimotor rhythms, such as event-related desynchronization (ERD), are well-known features of discriminating motor tasks. Fractal dimension (FD) can be used to evaluate the complexity and self-similarity in brain signals, potentially providing complementary information to frequency-based signal features. METHODS In the present work, we introduce FD as a novel feature for subject-independent event classification, and we test several machine learning (ML) models in behavioural tasks of motor imagery (MI) and motor execution (ME). RESULTS Our results show that FD improves the classification accuracy of ML compared to ERD. Furthermore, unilateral hand movements have higher classification accuracy than bilateral movements in both MI and ME tasks. CONCLUSIONS These results provide further insights into subject-independent event classification in BCI systems and demonstrate the potential of FD as a discriminative feature for EEG signals.
Collapse
Affiliation(s)
| | | | - Franca Tecchio
- Institute of Cognitive Sciences and Technologies (ISCT) - National Research Council (CNR), 00185 Rome, Italy
| | - Francesco Ferracuti
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Sabrina Iarlori
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Andrea Monteriù
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Camillo Porcaro
- Department of Neuroscience, University of Padova, 35128 Padua, Italy; Padova Neuroscience Center (PNC), University of Padova, 35131 Padua, Italy; Institute of Cognitive Sciences and Technologies (ISCT) - National Research Council (CNR), 00185 Rome, Italy; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Wang HL, Kuo YT, Lo YC, Kuo CH, Chen BW, Wang CF, Wu ZY, Lee CE, Yang SH, Lin SH, Chen PC, Chen YY. Enhancing Prediction of Forelimb Movement Trajectory through a Calibrating-Feedback Paradigm Incorporating RAT Primary Motor and Agranular Cortical Ensemble Activity in the Goal-Directed Reaching Task. Int J Neural Syst 2023; 33:2350051. [PMID: 37632142 DOI: 10.1142/s012906572350051x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Complete reaching movements involve target sensing, motor planning, and arm movement execution, and this process requires the integration and communication of various brain regions. Previously, reaching movements have been decoded successfully from the motor cortex (M1) and applied to prosthetic control. However, most studies attempted to decode neural activities from a single brain region, resulting in reduced decoding accuracy during visually guided reaching motions. To enhance the decoding accuracy of visually guided forelimb reaching movements, we propose a parallel computing neural network using both M1 and medial agranular cortex (AGm) neural activities of rats to predict forelimb-reaching movements. The proposed network decodes M1 neural activities into the primary components of the forelimb movement and decodes AGm neural activities into internal feedforward information to calibrate the forelimb movement in a goal-reaching movement. We demonstrate that using AGm neural activity to calibrate M1 predicted forelimb movement can improve decoding performance significantly compared to neural decoders without calibration. We also show that the M1 and AGm neural activities contribute to controlling forelimb movement during goal-reaching movements, and we report an increase in the power of the local field potential (LFP) in beta and gamma bands over AGm in response to a change in the target distance, which may involve sensorimotor transformation and communication between the visual cortex and AGm when preparing for an upcoming reaching movement. The proposed parallel computing neural network with the internal feedback model improves prediction accuracy for goal-reaching movements.
Collapse
Affiliation(s)
- Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Yun-Ting Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 235235, Taiwan
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute Taipei Veterans General Hospital, No. 201, Sec. 2 Shipai Rd., Taipei 11217, Taiwan
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Zu-Yu Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Chi-En Lee
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3 Zhongyang Rd., Hualien 97002, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 235235, Taiwan
| |
Collapse
|
5
|
Cho W, Vidaurre C, An J, Birbaumer N, Ramos-Murguialday A. Cortical processing during robot and functional electrical stimulation. Front Syst Neurosci 2023; 17:1045396. [PMID: 37025164 PMCID: PMC10070684 DOI: 10.3389/fnsys.2023.1045396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Like alpha rhythm, the somatosensory mu rhythm is suppressed in the presence of somatosensory inputs by implying cortical excitation. Sensorimotor rhythm (SMR) can be classified into two oscillatory frequency components: mu rhythm (8-13 Hz) and beta rhythm (14-25 Hz). The suppressed/enhanced SMR is a neural correlate of cortical activation related to efferent and afferent movement information. Therefore, it would be necessary to understand cortical information processing in diverse movement situations for clinical applications. Methods In this work, the EEG of 10 healthy volunteers was recorded while fingers were moved passively under different kinetic and kinematic conditions for proprioceptive stimulation. For the kinetics aspect, afferent brain activity (no simultaneous volition) was compared under two conditions of finger extension: (1) generated by an orthosis and (2) generated by the orthosis simultaneously combined and assisted with functional electrical stimulation (FES) applied at the forearm muscles related to finger extension. For the kinematic aspect, the finger extension was divided into two phases: (1) dynamic extension and (2) static extension (holding the extended position). Results In the kinematic aspect, both mu and beta rhythms were more suppressed during a dynamic than a static condition. However, only the mu rhythm showed a significant difference between kinetic conditions (with and without FES) affected by attention to proprioception after transitioning from dynamic to static state, but the beta rhythm was not. Discussion Our results indicate that mu rhythm was influenced considerably by muscle kinetics during finger movement produced by external devices, which has relevant implications for the design of neuromodulation and neurorehabilitation interventions.
Collapse
Affiliation(s)
- Woosang Cho
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
- *Correspondence: Woosang Cho,
| | - Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance, Neurotechnology Laboratory, San Sebastián, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, Spain
| | - Jinung An
- Interdisciplinary Studies, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- San Camillo Hospital, Institute for Hospitalization and Scientific Care, Venice Lido, Italy
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- TECNALIA, Basque Research and Technology Alliance, Neurotechnology Laboratory, San Sebastián, Spain
| |
Collapse
|
6
|
Croce P, Tecchio F, Tamburro G, Fiedler P, Comani S, Zappasodi F. Brain electrical microstate features as biomarkers of a stable motor output. J Neural Eng 2022; 19. [PMID: 36195069 DOI: 10.1088/1741-2552/ac975b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/04/2022] [Indexed: 01/27/2023]
Abstract
Objective.The aim of the present study was to elucidate the brain dynamics underlying the maintenance of a constant force level exerted during a visually guided isometric contraction task by optimizing a predictive multivariate model based on global and spectral brain dynamics features.Approach.Electroencephalography (EEG) was acquired in 18 subjects who were asked to press a bulb and maintain a constant force level, indicated by a bar on a screen. For intervals of 500 ms, we calculated an index of force stability as well as indices of brain dynamics: microstate metrics (duration, occurrence, global explained variance, directional predominance) and EEG spectral amplitudes in the theta, low alpha, high alpha and beta bands. We optimized a multivariate regression model (partial least square (PLS)) where the microstate features and the spectral amplitudes were the input variables and the indexes of force stability were the output variables. The issues related to the collinearity among the input variables and to the generalizability of the model were addressed using PLS in a nested cross-validation approach.Main results.The optimized PLS regression model reached a good generalizability and succeeded to show the predictive value of microstates and spectral features in inferring the stability of the exerted force. Longer duration and higher occurrence of microstates, associated with visual and executive control networks, corresponded to better contraction performances, in agreement with the role played by the visual system and executive control network for visuo-motor integration.Significance.A combination of microstate metrics and brain rhythm amplitudes could be considered as biomarkers of a stable visually guided motor output not only at a group level, but also at an individual level. Our results may play an important role for a better understanding of the motor control in single trials or in real-time applications as well as in the study of motor control.
Collapse
Affiliation(s)
- Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy.,Behavioral Imaging and Neural Dynamics Center, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), ISTC-CNR, Rome, Italy.,Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Gabriella Tamburro
- Department of Neuroscience, Imaging and Clinical Sciences, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy.,Behavioral Imaging and Neural Dynamics Center, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Silvia Comani
- Department of Neuroscience, Imaging and Clinical Sciences, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy.,Behavioral Imaging and Neural Dynamics Center, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy.,Behavioral Imaging and Neural Dynamics Center, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University 'Gabriele d'Annunzio' of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
Calcagno A, Coelli S, Temporiti F, Mandaresu S, Gatti R, Galli M, Bianchi AM. Action Observation Therapy Before Sleep Hours: An EEG Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4809-4812. [PMID: 36086203 DOI: 10.1109/embc48229.2022.9871733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Action Observation Therapy (AOT) is a rehabilitation method which aims at stimulating motor memory by means of the repetitive observation of motor tasks presented through video-clips. Since sleep seems to have a positive effect on learning processes, it is reasonable to hypothesize that the delivery of AOT immediately before sleep hours could enhance the effects of motor training. The objective of the present work was to test the effect of AOT delivered before the sleep hours in terms of improvements in manual dexterity and changes in cortical activity through Electroencephalography (EEG) on healthy subjects. Specifically, EEG traces acquired on a treatment and on a control group before and after three weeks of training during the execution of a Nine Hole Peg Test were analyzed. The spectral analysis of brain signals showed an increased activation of the motor cortex on a subgroup of the treatment subjects. Moreover, a significantly higher involvement of frontal areas was observed in the treatment group.
Collapse
|
8
|
Zhao M, Bonassi G, Samogin J, Taberna GA, Porcaro C, Pelosin E, Avanzino L, Mantini D. Assessing Neurokinematic and Neuromuscular Connectivity During Walking Using Mobile Brain-Body Imaging. Front Neurosci 2022; 16:912075. [PMID: 35720696 PMCID: PMC9204106 DOI: 10.3389/fnins.2022.912075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gait is a common but rather complex activity that supports mobility in daily life. It requires indeed sophisticated coordination of lower and upper limbs, controlled by the nervous system. The relationship between limb kinematics and muscular activity with neural activity, referred to as neurokinematic and neuromuscular connectivity (NKC/NMC) respectively, still needs to be elucidated. Recently developed analysis techniques for mobile high-density electroencephalography (hdEEG) recordings have enabled investigations of gait-related neural modulations at the brain level. To shed light on gait-related neurokinematic and neuromuscular connectivity patterns in the brain, we performed a mobile brain/body imaging (MoBI) study in young healthy participants. In each participant, we collected hdEEG signals and limb velocity/electromyography signals during treadmill walking. We reconstructed neural signals in the alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) frequency bands, and assessed the co-modulations of their power envelopes with myogenic/velocity envelopes. Our results showed that the myogenic signals have larger discriminative power in evaluating gait-related brain-body connectivity with respect to kinematic signals. A detailed analysis of neuromuscular connectivity patterns in the brain revealed robust responses in the alpha and beta bands over the lower limb representation in the primary sensorimotor cortex. There responses were largely contralateral with respect to the body sensor used for the analysis. By using a voxel-wise analysis of variance on the NMC images, we revealed clear modulations across body sensors; the variability across frequency bands was relatively lower, and below significance. Overall, our study demonstrates that a MoBI platform based on hdEEG can be used for the investigation of gait-related brain-body connectivity. Future studies might involve more complex walking conditions to gain a better understanding of fundamental neural processes associated with gait control, or might be conducted in individuals with neuromotor disorders to identify neural markers of abnormal gait.
Collapse
Affiliation(s)
- Mingqi Zhao
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Azienda Sanitaria Locale Chiavarese, Genoa, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | | | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center, University of Padua, Padua, Italy
- Institute of Cognitive Sciences and Technologies—National Research Council, Rome, Italy
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- *Correspondence: Dante Mantini,
| |
Collapse
|
9
|
Porcaro C, Vecchio F, Miraglia F, Zito G, Rossini PM. Dynamics of the "Cognitive" Brain Wave P3b at Rest for Alzheimer Dementia Prediction in Mild Cognitive Impairment. Int J Neural Syst 2022; 32:2250022. [PMID: 35435134 DOI: 10.1142/s0129065722500228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia that involves a progressive and irrevocable decline in cognitive abilities and social behavior, thus annihilating the patient's autonomy. The theoretical assumption that disease-modifying drugs are most effective in the early stages hopefully in the prodromal stage called mild cognitive impairment (MCI) urgently pushes toward the identification of robust and individualized markers of cognitive decline to establish an early pharmacological intervention. This requires the combination of well-established neural mechanisms and the development of increasingly sensitive methodologies. Among the neurophysiological markers of attention and cognition, one of the sub-components of the 'cognitive brain wave' P300 recordable in an odd-ball paradigm -namely the P3b- is extensively regarded as a sensitive indicator of cognitive performance. Several studies have reliably shown that changes in the amplitude and latency of the P3b are strongly related to cognitive decline and aging both healthy and pathological. Here, we used a P3b spatial filter to enhance the electroencephalographic (EEG) characteristics underlying 175 subjects divided into 135 MCI subjects, 20 elderly controls (EC), and 20 young volunteers (Y). The Y group served to extract the P3b spatial filter from EEG data, which was later applied to the other groups during resting conditions with eyes open and without being asked to perform any task. The group of 135 MCI subjects could be divided into two subgroups at the end of a month follow-up: 75 with stable MCI (MCI-S, not converted to AD), 60 converted to AD (MCI-C). The P3b spatial filter was built by means of a signal processing method called Functional Source Separation (FSS), which increases signal-to-noise ratio by using a weighted sum of all EEG recording channels rather than relying on a single, or a small sub-set, of channels. A clear difference was observed for the P3b dynamics at rest between groups. Moreover, a machine learning approach showed that P3b at rest could correctly distinguish MCI from EC (80.6% accuracy) and MCI-S from MCI-C (74.1% accuracy), with an accuracy as high as 93.8% in discriminating between MCI-C and EC. Finally, a comparison of the Bayes factor revealed that the group differences among MCI-S and MCI-C were 138 times more likely to be detected using the P3b dynamics compared with the best performing single electrode (Pz) approach. In conclusion, we propose that P3b as measured through spatial filters can be safely regarded as a simple and sensitive marker to predict the conversion from an MCI to AD status eventually combined with other non-neurophysiological biomarkers for a more precise definition of dementia having neuropathological Alzheimer characteristics.
Collapse
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.,Institute of Cognitive Sciences and Technologies, (ISTC) - National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy.,Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy
| | - Francesca Miraglia
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy.,Department of Neurology, Neurovascular Treatment Unit, San Camillo de Lellis Hospital, Rieti, Italy
| | - Giancarlo Zito
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy.,Department of Neurology, Neurovascular Treatment Unit, San Camillo de Lellis Hospital, Rieti, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy
| |
Collapse
|
10
|
Corticomuscular coherence dependence on body side and visual feedback. Neuroscience 2022; 490:144-154. [DOI: 10.1016/j.neuroscience.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022]
|
11
|
Ferracuti F, Iarlori S, Mansour Z, Monteriù A, Porcaro C. Comparing between Different Sets of Preprocessing, Classifiers, and Channels Selection Techniques to Optimise Motor Imagery Pattern Classification System from EEG Pattern Recognition. Brain Sci 2021; 12:57. [PMID: 35053801 PMCID: PMC8774038 DOI: 10.3390/brainsci12010057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
The ability to control external devices through thought is increasingly becoming a reality. Human beings can use the electrical signals of their brain to interact or change the surrounding environment and more. The development of this technology called brain-computer interface (BCI) will increasingly allow people with motor disabilities to communicate or use assistive devices to walk, manipulate objects and communicate. Using data from the PhysioNet database, this study implemented a pattern classification system for use in a BCI on 109 healthy volunteers during real movement activities and motor imagery recorded by 64-channels electroencephalography (EEG) system. Different classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Trees (TREE) were applied on different combinations of EEG channels. Starting from two channels (C3, C4 and CP3 and CP4) positioned on the contralateral and ipsilateral sensorimotor cortex, the Region of Interest (RoI) centred on C3/Cp3 and C4/Cp4 and, finally, a data-driven automatic channels selection was tested to explore the best channel combination able to increase the classification accuracy. The results showed that the proposed automatic channels selection was able to significantly improve the performance of each classifier achieving 98% of accuracy for classification of real and imagined hand movement (sensitivity = 97%, specificity = 99%, AUC = 0.99) by SVM. While the accuracy of the classification between the imagery of hand and foot movements was 91% (sensitivity = 87%, specificity = 86%, AUC = 0.93) also with SVM. In the proposed approach, the data-driven automatic channels selection outperforms classical a priori channel selection models such as C3/C4, Cp3/Cp4, or RoIs around those channels with the utmost accuracy to help remove the boundaries of human communication and improve the quality of life of people with disabilities.
Collapse
Affiliation(s)
- Francesco Ferracuti
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.F.); (S.I.); (Z.M.); (A.M.)
| | - Sabrina Iarlori
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.F.); (S.I.); (Z.M.); (A.M.)
| | - Zahra Mansour
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.F.); (S.I.); (Z.M.); (A.M.)
| | - Andrea Monteriù
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.F.); (S.I.); (Z.M.); (A.M.)
| | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
- Institute of Cognitive Sciences and Technologies (ISCT)—National Research Council (CNR), 00185 Rome, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Feng N, Hu F, Wang H, Zhou B. Motor Intention Decoding from the Upper Limb by Graph Convolutional Network Based on Functional Connectivity. Int J Neural Syst 2021; 31:2150047. [PMID: 34693880 DOI: 10.1142/s0129065721500477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Decoding brain intention from noninvasively measured neural signals has recently been a hot topic in brain-computer interface (BCI). The motor commands about the movements of fine parts can increase the degrees of freedom under control and be applied to external equipment without stimulus. In the decoding process, the classifier is one of the key factors, and the graph information of the EEG was ignored by most researchers. In this paper, a graph convolutional network (GCN) based on functional connectivity was proposed to decode the motor intention of four fine parts movements (shoulder, elbow, wrist, hand). First, event-related desynchronization was analyzed to reveal the differences between the four classes. Second, functional connectivity was constructed by using synchronization likelihood (SL), phase-locking value (PLV), H index (H), mutual information (MI), and weighted phase-lag index (WPLI) to acquire the electrode pairs with a difference. Subsequently, a GCN and convolutional neural networks (CNN) were performed based on functional topological structures and time points, respectively. The results demonstrated that the proposed method achieved a decoding accuracy of up to 92.81% in the four-class task. Besides, the combination of GCN and functional connectivity can promote the development of BCI.
Collapse
Affiliation(s)
- Naishi Feng
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Fo Hu
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Hong Wang
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Bin Zhou
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|