1
|
Zhao L, Zou R, Jin L. Deep Learning Recognition of Paroxysmal Kinesigenic Dyskinesia Based on EEG Functional Connectivity. Int J Neural Syst 2025; 35:2550001. [PMID: 39560445 DOI: 10.1142/s0129065725500017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder marked by transient involuntary movements triggered by sudden actions. Current diagnostic approaches, including genetic screening, face challenges in identifying secondary cases due to symptom overlap with other disorders. This study introduces a novel PKD recognition method utilizing a resting-state electroencephalogram (EEG) functional connectivity matrix and a deep learning architecture (AT-1CBL). Resting-state EEG data from 44 PKD patients and 44 healthy controls (HCs) were collected using a 128-channel EEG system. Functional connectivity matrices were computed and transformed into graph data to examine brain network property differences between PKD patients and controls through graph theory. Source localization was conducted to explore neural circuit differences in patients. The AT-1CBL model, integrating 1D-CNN and Bi-LSTM with attentional mechanisms, achieved a classification accuracy of 93.77% on phase lag index (PLI) features in the Theta band. Graph theoretic analysis revealed significant phase synchronization impairments in the Theta band of the functional brain network in PKD patients, particularly in the distribution of weak connections compared to HCs. Source localization analyses indicated greater differences in functional connectivity in sensorimotor regions and the frontal-limbic system in PKD patients, suggesting abnormalities in motor integration related to clinical symptoms. This study highlights the potential of deep learning models based on EEG functional connectivity for accurate and cost-effective PKD diagnosis, supporting the development of portable EEG devices for clinical monitoring and diagnosis. However, the limited dataset size may affect generalizability, and further exploration of multimodal data integration and advanced deep learning architectures is necessary to enhance the robustness of PKD diagnostic models.
Collapse
Affiliation(s)
- Liang Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Renling Zou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Linpeng Jin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
2
|
Cui H, Zhong X, Li H, Li C, Dong X, Ji D, He L, Zhou W. A Lightweight Convolutional Neural Network-Reformer Model for Efficient Epileptic Seizure Detection. Int J Neural Syst 2024; 34:2450065. [PMID: 39347621 DOI: 10.1142/s0129065724500655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
A real-time and reliable automatic detection system for epileptic seizures holds significant value in assisting physicians with rapid diagnosis and treatment of epilepsy. Aiming to address this issue, a novel lightweight model called Convolutional Neural Network-Reformer (CNN-Reformer) is proposed for seizure detection on long-term EEG. The CNN-Reformer consists of two main parts: the Data Reshaping (DR) module and the Efficient Attention and Concentration (EAC) module. This framework reduces network parameters while retaining effective feature extraction of multi-channel EEGs, thereby improving model computational efficiency and real-time performance. Initially, the raw EEG signals undergo Discrete Wavelet Transform (DWT) for signal filtering, and then fed into the DR module for data compression and reshaping while preserving local features. Subsequently, these local features are sent to the EAC module to extract global features and perform categorization. Post-processing involving sliding window averaging, thresholding, and collar techniques is further deployed to reduce the false detection rate (FDR) and improve detection performance. On the CHB-MIT scalp EEG dataset, our method achieves an average sensitivity of 97.57%, accuracy of 98.09%, and specificity of 98.11% at segment-based level, and a sensitivity of 96.81%, along with FDR of 0.27/h, and latency of 17.81 s at the event-based level. On the SH-SDU dataset we collected, our method yielded segment-based sensitivity of 94.51%, specificity of 92.83%, and accuracy of 92.81%, along with event-based sensitivity of 94.11%. The average testing time for 1[Formula: see text]h of multi-channel EEG signals is 1.92[Formula: see text]s. The excellent results and fast computational speed of the CNN-Reformer model demonstrate its potential for efficient seizure detection.
Collapse
Affiliation(s)
- Haozhou Cui
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Xiangwen Zhong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Haotian Li
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Chuanyu Li
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Dezan Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Landi He
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
3
|
Hu W, Wang J, Li F, Ge D, Wang Y, Jia Q, Yuan S. A Modified Transformer Network for Seizure Detection Using EEG Signals. Int J Neural Syst 2024:2550003. [PMID: 39560448 DOI: 10.1142/s0129065725500030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Seizures have a serious impact on the physical function and daily life of epileptic patients. The automated detection of seizures can assist clinicians in taking preventive measures for patients during the diagnosis process. The combination of deep learning (DL) model with convolutional neural network (CNN) and transformer network can effectively extract both local and global features, resulting in improved seizure detection performance. In this study, an enhanced transformer network named Inresformer is proposed for seizure detection, which is combined with Inception and Residual network extracting different scale features of electroencephalography (EEG) signals to enrich the feature representation. In addition, the improved transformer network replaces the existing Feedforward layers with two half-step Feedforward layers to enhance the nonlinear representation of the model. The proposed architecture utilizes discrete wavelet transform (DWT) to decompose the original EEG signals, and the three sub-bands are selected for signal reconstruction. Then, the Co-MixUp method is adopted to solve the problem of data imbalance, and the processed signals are sent to the Inresformer network for seizure information capture and recognition. Finally, discriminant fusion is performed on the results of three-scale EEG sub-signals to achieve final seizure recognition. The proposed network achieves the best accuracy of 100% on Bonn dataset and the average accuracy of 98.03%, sensitivity of 95.65%, and specificity of 98.57% on the long-term CHB-MIT dataset. Compared to the existing DL networks, the proposed method holds significant potential for clinical research and diagnosis applications with competitive performance.
Collapse
Affiliation(s)
- Wenrong Hu
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Juan Wang
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Feng Li
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Daohui Ge
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Yuxia Wang
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Qingwei Jia
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| |
Collapse
|
4
|
Liu Y, Jiang Y, Liu J, Li J, Liu M, Nie W, Yuan Q. Efficient EEG Feature Learning Model Combining Random Convolutional Kernel with Wavelet Scattering for Seizure Detection. Int J Neural Syst 2024; 34:2450060. [PMID: 39252680 DOI: 10.1142/s0129065724500606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Automatic seizure detection has significant value in epilepsy diagnosis and treatment. Although a variety of deep learning models have been proposed to automatically learn electroencephalography (EEG) features for seizure detection, the generalization performance and computational burden of such deep models remain the bottleneck of practical application. In this study, a novel lightweight model based on random convolutional kernel transform (ROCKET) is developed for EEG feature learning for seizure detection. Specifically, random convolutional kernels are embedded into the structure of a wavelet scattering network instead of original wavelet transform convolutions. Then the significant EEG features are selected from the scattering coefficients and convolutional outputs by analysis of variance (ANOVA) and minimum redundancy-maximum relevance (MRMR) methods. This model not only preserves the merits of the fast-training process from ROCKET, but also provides insight into seizure detection by retaining only the helpful channels. The extreme gradient boosting (XGboost) classifier was combined with this EEG feature learning model to build a comprehensive seizure detection system that achieved promising epoch-based results, with over 90% of both sensitivity and specificity on the scalp and intracranial EEG databases. The experimental comparisons showed that the proposed method outperformed other state-of-the-art methods for cross-patient and patient-specific seizure detection.
Collapse
Affiliation(s)
- Yasheng Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Yonghui Jiang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Jie Liu
- Department of Pediatric Intensive Care Unit, Shandong Provincial Maternal and Child Health Care Hospital, Affiliated to Qingdao University, Jinan 250014, P. R. China
| | - Jie Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Mingze Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Weiwei Nie
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University, Jinan 250014, P. R. China
| | - Qi Yuan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
5
|
Park H, Seo J, Kim K, Kim T. Predicting the Wear Amount of Tire Tread Using 1D-CNN. SENSORS (BASEL, SWITZERLAND) 2024; 24:6901. [PMID: 39517798 PMCID: PMC11548380 DOI: 10.3390/s24216901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Since excessively worn tires pose a significant risk to vehicle safety, it is crucial to monitor tire wear regularly. This study aimed to verify the efficient tire wear prediction algorithm proposed in a previous modeling study, which minimizes the required input data, and use driving test data to validate the method. First, driving tests were conducted with tires at various wear levels to measure internal accelerations. The acceleration signals were then screened using empirical functions to exclude atypical data before proceeding with the machine learning process. Finally, a tire wear prediction algorithm based on a 1D-CNN with bottleneck features was developed and evaluated. The developed algorithm showed an RMSE of 5.2% (or 0.42 mm) using only the acceleration signals. When tire pressure and vertical load were included, the prediction error was reduced by 11.5%, resulting in an RMSE of 4.6%. These findings suggest that the 1D-CNN approach is an efficient method for predicting tire wear states, requiring minimal input data. Additionally, it supports the potential usefulness of the intelligent tire technology framework proposed in the modeling study.
Collapse
Affiliation(s)
| | | | | | - Taewung Kim
- Department of Mechanical Design Engineering, Tech University of Korea, Siheung-si 15073, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Wang J, Sun M, Huang W. Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models. Int J Neural Syst 2024; 34:2450047. [PMID: 38864575 DOI: 10.1142/s0129065724500473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
While many seizure detection methods have demonstrated great accuracy, their training necessitates a substantial volume of labeled data. To address this issue, we propose a novel method for unsupervised seizure anomaly detection called SAnoDDPM, which uses denoising diffusion probabilistic models (DDPM). We designed a novel pipeline that uses a variable lower bound on Markov chains to identify potential values that are unlikely to occur in anomalous data. The model is first trained on normal data, then anomalous data is input to the trained model. The model resamples the anomalous data and converts it to normal data. Finally, the presence of seizures can be determined by comparing the before and after data. Moreover, the input 2D spectrograms are encoded into vector-quantized representations, which enables powerful and efficient DDPM while maintaining its quality. Experimental comparisons on the publicly available datasets, CHB-MIT and TUH, show that our method delivers better results, significantly reduces inference time, and is suitable for deployment in a clinical environments. As far as we are aware, this is the first DDPM-based method for seizure anomaly detection. This novel approach significantly contributes to the progression of seizure detection algorithms, thereby augmenting their practicality in clinical settings.
Collapse
Affiliation(s)
- Jiale Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| | - Mengxue Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| | - Wenhui Huang
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| |
Collapse
|
7
|
Liu C, Chen W, Li M. A hybrid EEG classification model using layered cascade deep learning architecture. Med Biol Eng Comput 2024; 62:2213-2229. [PMID: 38507121 DOI: 10.1007/s11517-024-03072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The problem of multi-class classification is always a challenge in the field of EEG (electroencephalogram)-based seizure detection. The traditional studies focus on computing or learning a set of features from EEG to distinguish between different patterns. However, the extraction of characteristic information becomes increasingly difficult as the number of EEG types increases. To address this issue, a creative EEG classification technique is proposed by employing a principal component analysis network (PCANet) coupled with phase space reconstruction (PSR) and power spectrum density (PSD). We have introduced the PSR and PSD to prepare the inputs, where dynamic and frequency information are exposed from deep within PCANet. It is remarkable that a layered cascade strategy is designed to make a powerful deep learner according to the rule of one network vs one task (OVO). The proposed method has achieved greater effects than the individual models and shown superior performance in comparison with state-of-the-art algorithms, which present 98.0% of sensitivity, 99.90% of specificity, and 99.07% of accuracy. Our ensemble PCANet model works in an assembly line-like manner, obviating the need for hand-craft features. Results demonstrate that the proposed scheme can greatly enhances the accuracy and robustness of seizure detection from EEG signals.
Collapse
Affiliation(s)
- Chang Liu
- College of Communication Engineering, Jilin University, Ren Min Street 5988, Changchun, China
| | - Wanzhong Chen
- College of Communication Engineering, Jilin University, Ren Min Street 5988, Changchun, China
| | - Mingyang Li
- College of Communication Engineering, Jilin University, Ren Min Street 5988, Changchun, China.
| |
Collapse
|
8
|
Gill TS, Zaidi SSH, Shirazi MA. Attention-based deep convolutional neural network for classification of generalized and focal epileptic seizures. Epilepsy Behav 2024; 155:109732. [PMID: 38636140 DOI: 10.1016/j.yebeh.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Epilepsy affects over 50 million people globally. Electroencephalography is critical for epilepsy diagnosis, but manual seizure classification is time-consuming and requires extensive expertise. This paper presents an automated multi-class seizure classification model using EEG signals from the Temple University Hospital Seizure Corpus ver. 1.5.2. 11 features including time-based correlation, time-based eigenvalues, power spectral density, frequency-based correlation, frequency-based eigenvalues, sample entropy, spectral entropy, logarithmic sum, standard deviation, absolute mean, and ratio of Daubechies D4 wavelet transformed coefficients were extracted from 10-second sliding windows across channels. The model combines multi-head self-attention mechanism with a deep convolutional neural network (CNN) to classify seven subtypes of generalized and focal epileptic seizures. The model achieved 0.921 weighted accuracy and 0.902 weighted F1 score in classifying focal onset non-motor, generalized onset non-motor, simple partial, complex partial, absence, tonic, and tonic-clonic seizures. In comparison, a CNN model without multi-head attention achieved 0.767 weighted accuracy. Ablation studies were conducted to validate the importance of transformer encoders and attention. The promising classification results demonstrate the potential of deep learning for handling EEG complexity and improving epilepsy diagnosis. This seizure classification model could enable timely interventions when translated into clinical practice.
Collapse
Affiliation(s)
- Taimur Shahzad Gill
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Syed Sajjad Haider Zaidi
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Ayaz Shirazi
- Department of Electronics and Power Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| |
Collapse
|
9
|
Dong X, Wen Y, Ji D, Yuan S, Liu Z, Shang W, Zhou W. Epileptic Seizure Detection with an End-to-End Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model. Int J Neural Syst 2024; 34:2450012. [PMID: 38230571 DOI: 10.1142/s0129065724500126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Automatic seizure detection plays a key role in assisting clinicians for rapid diagnosis and treatment of epilepsy. In view of the parallelism of temporal convolutional network (TCN) and the capability of bidirectional long short-term memory (BiLSTM) in mining the long-range dependency of multi-channel time-series, we propose an automatic seizure detection method with a novel end-to-end TCN-BiLSTM model in this work. First, raw EEG is filtered with a 0.5-45 Hz band-pass filter, and the filtered data are input into the proposed TCN-BiLSTM network for feature extraction and classification. Post-processing process including moving average filtering, thresholding and collar technique is then employed to further improve the detection performance. The method was evaluated on two EEG database. On the CHB-MIT scalp EEG database, our method achieved a segment-based sensitivity of 94.31%, specificity of 97.13%, and accuracy of 97.09%. Meanwhile, an event-based sensitivity of 96.48% and an average false detection rate (FDR) of 0.38/h were obtained. On the SH-SDU database we collected, the segment-based sensitivity of 94.99%, specificity of 93.25%, and accuracy of 93.27% were achieved. In addition, an event-based sensitivity of 99.35% and a false detection rate of 0.54/h were yielded. The total detection time consumed for 1[Formula: see text]h EEG data was 5.65[Formula: see text]s. These results demonstrate the superiority and promising potential of the proposed method in real-time monitoring of epileptic seizures.
Collapse
Affiliation(s)
- Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Yiming Wen
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Dezan Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Zhen Liu
- Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Wei Shang
- Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
10
|
Li W, Huang W, Zheng Y. CorrDiff: Corrective Diffusion Model for Accurate MRI Brain Tumor Segmentation. IEEE J Biomed Health Inform 2024; 28:1587-1598. [PMID: 38215328 DOI: 10.1109/jbhi.2024.3353272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Accurate segmentation of brain tumors in MRI images is imperative for precise clinical diagnosis and treatment. However, existing medical image segmentation methods exhibit errors, which can be categorized into two types: random errors and systematic errors. Random errors, arising from various unpredictable effects, pose challenges in terms of detection and correction. Conversely, systematic errors, attributable to systematic effects, can be effectively addressed through machine learning techniques. In this paper, we propose a corrective diffusion model for accurate MRI brain tumor segmentation by correcting systematic errors. This marks the first application of the diffusion model for correcting systematic segmentation errors. Additionally, we introduce the Vector Quantized Variational Autoencoder (VQ-VAE) to compress the original data into a discrete coding codebook. This not only reduces the dimensionality of the training data but also enhances the stability of the correction diffusion model. Furthermore, we propose the Multi-Fusion Attention Mechanism, which can effectively enhances the segmentation performance of brain tumor images, and enhance the flexibility and reliability of the corrective diffusion model. Our model is evaluated on the BRATS2019, BRATS2020, and Jun Cheng datasets. Experimental results demonstrate the effectiveness of our model over state-of-the-art methods in brain tumor segmentation.
Collapse
|
11
|
Han Z, Huang W. Arbitrary scale super-resolution diffusion model for brain MRI images. Comput Biol Med 2024; 170:108003. [PMID: 38262200 DOI: 10.1016/j.compbiomed.2024.108003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Given the constraints posed by hardware capacity, scan duration, and patient cooperation, the reconstruction of magnetic resonance imaging (MRI) images emerges as a pivotal aspect of medical imaging research. Currently, deep learning-based super-resolution (SR) methods have been widely discussed in medical image processing due to their ability to reconstruct high-quality, high resolution (HR) images from low resolution (LR) inputs. However, most existing MRI SR methods are designed for specific magnifications and cannot generate MRI images at arbitrary scales, which hinders the radiologists from fully visualizing the lesions. Moreover, current arbitrary scale SR methods often suffer from issues like excessive smoothing and artifacts. In this paper, we propose an Arbitrary Scale Super-Resolution Diffusion Model (ASSRDM), which combines implicit neural representation with the denoising diffusion probabilistic model to achieve arbitrary-scale, high-fidelity medical images SR. Moreover, we formulate a continuous resolution regulation mechanism, comprising a multi-scale LR guidance network and a scaling factor. The scaling factor finely adjusts the resolution and dynamically influences the weighting of LR details and synthesized features in the final output. This capability allows the model to seamlessly adapt to the requirements of continuous resolution adjustments. Additionally, the multi-scale LR guidance network provides the denoising block with multi-resolution LR features to enrich texture information and restore high-frequency details. Extensive experiments conducted on the IXI and fastMRI datasets demonstrate that our ASSRDM exhibits superior performance compared to existing techniques and has tremendous potential in clinical practice.
Collapse
Affiliation(s)
- Zhitao Han
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Wenhui Huang
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
12
|
Yousif MAA, Ozturk M. Deep Learning-Based Classification of Epileptic Electroencephalography Signals Using a Concentrated Time-Frequency Approach. Int J Neural Syst 2023; 33:2350064. [PMID: 37830300 DOI: 10.1142/s0129065723500648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
ConceFT (concentration of frequency and time) is a new time-frequency (TF) analysis method which combines multitaper technique and synchrosqueezing transform (SST). This combination produces highly concentrated TF representations with approximately perfect time and frequency resolutions. In this paper, it is aimed to show the TF representation performance and robustness of ConceFT by using it for the classification of the epileptic electroencephalography (EEG) signals. Therefore, a signal classification algorithm which uses TF images obtained with ConceFT to feed the transfer learning structure has been presented. Epilepsy is a common neurological disorder that millions of people suffer worldwide. Daily lives of the patients are quite difficult because of the unpredictable time of seizures. EEG signals monitoring the electrical activity of the brain can be used to detect approaching seizures and make possible to warn the patient before the attack. GoogLeNet which is a well-known deep learning model has been preferred to classify TF images. Classification performance is directly related to the TF representation accuracy of the ConceFT. The proposed method has been tested for various classification scenarios and obtained accuracies between 95.83% and 99.58% for two and three-class classification scenarios. High results show that ConceFT is a successful and promising TF analysis method for non-stationary biomedical signals.
Collapse
Affiliation(s)
- Mosab A A Yousif
- Department of Biomedical Engineering, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Electronics Engineering, University of Gezira, Wad-Madani, Sudan
| | - Mahmut Ozturk
- Department of Electrical and Electronics Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
13
|
Sun M, Wang J, Gong Q, Huang W. Enhancing gland segmentation in colon histology images using an instance-aware diffusion model. Comput Biol Med 2023; 166:107527. [PMID: 37778210 DOI: 10.1016/j.compbiomed.2023.107527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
In pathological image analysis, determination of gland morphology in histology images of the colon is essential to determine the grade of colon cancer. However, manual segmentation of glands is extremely challenging and there is a need to develop automatic methods for segmenting gland instances. Recently, due to the powerful noise-to-image denoising pipeline, the diffusion model has become one of the hot spots in computer vision research and has been explored in the field of image segmentation. In this paper, we propose an instance segmentation method based on the diffusion model that can perform automatic gland instance segmentation. Firstly, we model the instance segmentation process for colon histology images as a denoising process based on a diffusion model. Secondly, to recover details lost during denoising, we use Instance Aware Filters and multi-scale Mask Branch to construct global mask instead of predicting only local masks. Thirdly, to improve the distinction between the object and the background, we apply Conditional Encoding to enhance the intermediate features with the original image encoding. To objectively validate the proposed method, we compared several state-of-the-art deep learning models on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset (165 images), the Colorectal Adenocarcinoma Glands (CRAG) dataset (213 images) and the RINGS dataset (1500 images). Our proposed method obtains significantly improved results for CRAG (Object F1 0.853 ± 0.054, Object Dice 0.906 ± 0.043), GlaS Test A (Object F1 0.941 ± 0.039, Object Dice 0.939 ± 0.060), GlaS Test B (Object F1 0.893 ± 0.073, Object Dice 0.889 ± 0.069), and RINGS dataset (Precision 0.893 ± 0.096, Dice 0.904 ± 0.091). The experimental results show that our method significantly improves the segmentation accuracy, and the experiment results demonstrate the efficacy of the method.
Collapse
Affiliation(s)
- Mengxue Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Jiale Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Qingtao Gong
- Ulsan Ship and Ocean College, Ludong University, Yantai, 264025, China
| | - Wenhui Huang
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|