1
|
Xu JR, Zheng PH, Zhang XX, Li JT, Chen HQ, Zhang ZL, Hao CG, Cao YL, Xian JA, Lu YP, Dai HF. Effects of Elephantopus scaber extract on growth, proximate composition, immunity, intestinal microbiota and resistance of the GIFT strain of Nile tilapia Oreochromis niloticus to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2022; 127:280-294. [PMID: 35752371 DOI: 10.1016/j.fsi.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effects of Elephantopus scaber extract on the GIFT (genetic improvement of farmed tilapia) strain of Nile tilapia Oreochromis niloticus. A total of 800 tilapia with an initial body weight of 1.34 ± 0.09 g each were randomly divided into five groups. The tilapia in the control group (E0 group) were fed on a basal diet only. Meanwhile, tilapia in the four experimental groups were fed on a basal diet supplemented with 1 g/kg (E1 group), 3 g/kg (E2 group), 5 g/kg (E3 group), and 7 g/kg (E4 group) of E. scaber extract for 10 weeks. Results showed that the survival rate was higher in the experimental groups than in the control group. Compared with the control group, some growth parameters (FW, WGR, SGR, VSI, and HSI) were significantly improved in the E1 group and E2 group. The crude lipid content in the dorsal muscle and liver was lower in the E1 group than in the control group. After E. scaber extract supplementation, activities of immunity-related enzymes (ACP, AKP, T-AOC, SOD, CAT, GSH-Px and LZM) in plasma, liver, spleen and head kidney, and expressions of immunity-related genes (IL-1β, IFN-γ, TNF-α, and CCL-3) in liver, spleen and head kidney showed various degrees of improvement, while MDA content and Hsp70 expression level were decreased. The survival rate of tilapia increased in all the supplementation groups after Streptococcus agalactiae treatment. E. scaber extract addition changed the species composition, abundance, and diversity of intestinal microbiota in tilapia. These results demonstrate that E. scaber extract supplementation in diet can improve the growth, immunity, and disease resistance of GIFT against S. agalactiae. E. scaber extract supplementation can also change intestinal microbiota and reduce crude lipid content in dorsal muscle and liver. The above indicators show that the optimal dose of E. scaber extract for GIFT is 1 g/kg.
Collapse
Affiliation(s)
- Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Hui-Qin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Chen-Guang Hao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Yan-Lei Cao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China; Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Hao-Fu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| |
Collapse
|
2
|
Singh S, Nagalakshmi D, Sharma KK, Ravichandiran V. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon 2021; 7:e06216. [PMID: 33659743 PMCID: PMC7890213 DOI: 10.1016/j.heliyon.2021.e06216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2) play a crucial role in cellular redox and metabolic system. Activation of Nrf2 may be an effective therapeutic approach for neuroinflammatory disorders, through activation of antioxidant defences system, lower the inflammation, line up the mitochondrial function, and balancing of protein homeostasis. Various recent studies revealed that many of active substance obtained from plants have been found to activate the Nrf2 and to exert neuroprotective effects in various experimental models, raising the possibility that activation of Nrf2 may be an effective therapeutic approaches for neuroinflammatory disorders. The objective of this review was to evaluate the neuroprotective property of natural substance against neuroinflammatory disorders by reviewing the studies done till today. The outcomes of various in vitro and in vivo examinations have shown that natural compounds producing neuroprotective effects in neuronal system via activation of Nrf2. Herein, we also reviewed the studies to understand the role of Nrf2 for curing CNS disorders. Here we can conclude, herbal/natural moieties having potency to fight and prevent from neuroinflammatory disorders due to their abilities to activate Nrf2 pathway.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Devarapati Nagalakshmi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - K K Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
3
|
Qi R, Li X, Zhang X, Huang Y, Fei Q, Han Y, Cai R, Gao Y, Qi Y. Ethanol extract of Elephantopus scaber Linn. Attenuates inflammatory response via the inhibition of NF-κB signaling by dampening p65-DNA binding activity in lipopolysaccharide-activated macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112499. [PMID: 31877363 DOI: 10.1016/j.jep.2019.112499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Elephantopus scaber Linn. (E.scaber) is a widely-used traditional herb whose use has been documented for various inflammatory diseases such as fever, sore throat, dysentery, carbuncle and so on. However, the effect and mechanism of E.scaber in LPS-activated macrophages remain unclear. AIM This study aims to investigate the anti-inflammatory mechanism of the ethanol extract of E.scaber (ESE) in lipopolysaccharide (LPS)-induced inflammatory models. MATERIALS AND METHODS Griess reagent was used to determine NO production, and the levels of TNF-α, IL-6, MCP-1 and IL-1β were determined by ELISA kits. The molecular mechanism research was performed by RT-PCR, Western blot, and electrophoretic mobility shift assay (EMSA). LPS-induced endotoxemia mouse model was used for evaluating the in vivo anti-inflammatory action of ESE. RESULTS ESE suppressed LPS-induced iNOS, TNF-α, IL-6, MCP-1 and IL-1β transcription as well as supernatant NO, TNF-α, IL-6, MCP-1 and IL-1β production in macrophages. Although ESE inhibited NF-κB activation, it did not affect the IκBα phosphorylation and degradation and the NF-κB p65 nuclear translocation. The result of EMSA revealed that ESE inhibited the NF-κB p65-DNA binding activity. Additionally, ESE also decreased the proinflammatory cytokines in serum and peritoneal lavage fluid of LPS-induced endotoxemic mice. CONCLUSION ESE has a potently anti-inflammatory effect through inhibiting the NF-κB p65-DNA binding activity in LPS-activated macrophages.
Collapse
Affiliation(s)
- Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yunfeng Huang
- Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, Guangxi, China.
| | - Qiaoling Fei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
4
|
Chan CK, Tan LTH, Andy SN, Kamarudin MNA, Goh BH, Kadir HA. Anti-neuroinflammatory Activity of Elephantopus scaber L. via Activation of Nrf2/HO-1 Signaling and Inhibition of p38 MAPK Pathway in LPS-Induced Microglia BV-2 Cells. Front Pharmacol 2017; 8:397. [PMID: 28680404 PMCID: PMC5478732 DOI: 10.3389/fphar.2017.00397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Elephantopus scaber L. (family: Asteraceae) has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF) on the release of pro-inflammatory mediators in lipopolysaccharide (LPS)-induced microglia cells (BV-2). Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Chim-Kei Chan
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSubang Jaya, Malaysia
| | - Shathiswaran N Andy
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSubang Jaya, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
5
|
Deoxyelephantopin and Isodeoxyelephantopin as Potential Anticancer Agents with Effects on Multiple Signaling Pathways. Molecules 2017. [PMID: 28635648 PMCID: PMC6152668 DOI: 10.3390/molecules22061013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and isodeoxyelephantopin (IDET) are sesquiterpene lactone components of “Elephantopus scaber and Elephantopus carolinianus”, traditional Chinese medicinal herbs that have long been used as folk medicines to treat liver diseases, diabetes, diuresis, bronchitis, fever, diarrhea, dysentery, cancer, and inflammation. Recently, the anticancer activity of DET and IDET has been widely investigated. Here, our aim is to review the current status of DET and IDET, and discuss their anticancer activity with specific emphasis on molecular targets and mechanisms used by these compounds to trigger apoptosis pathways which may help to further design and conduct research to develop them as lead therapeutic drugs for cancer treatments. The literature has shown that DET and IDET induce apoptosis through multiple signaling pathways which are deregulated in cancer cells and suggested that by targeting multiple pathways simultaneously, these compounds could selectively kill cancer cells. This review suggests that DET and IDET hold promising anticancer activity but additional studies and clinical trials are needed to validate and understand their therapeutic effect to develop them into potent therapeutics for the treatment of cancer.
Collapse
|
6
|
Boye A, Zou YH, Yang Y. Metabolic derivatives of alcohol and the molecular culprits of fibro-hepatocarcinogenesis: Allies or enemies? World J Gastroenterol 2016; 22:50-71. [PMID: 26755860 PMCID: PMC4698508 DOI: 10.3748/wjg.v22.i1.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis, steatohepatitis, hepatic fibrosis and cirrhosis. Subsequently, these initial pathological events are sustained and ushered into a more complex and progressive liver disease, increasing the risk of fibro-hepatocarcinogenesis. These coordinated pathological events mainly result from buildup of toxic metabolic derivatives of alcohol including but not limited to acetaldehyde (AA), malondialdehyde (MDA), CYP2E1-generated reactive oxygen species, alcohol-induced gut-derived lipopolysaccharide, AA/MDA protein and DNA adducts. The metabolic derivatives of alcohol together with other comorbidity factors, including hepatitis B and C viral infections, dysregulated iron metabolism, abuse of antibiotics, schistosomiasis, toxic drug metabolites, autoimmune disease and other non-specific factors, have been shown to underlie liver diseases. In view of the multiple etiology of liver diseases, attempts to delineate the mechanism by which each etiological factor causes liver disease has always proved cumbersome if not impossible. In the case of alcoholic liver disease (ALD), it is even more cumbersome and complicated as a result of the many toxic metabolic derivatives of alcohol with their varying liver-specific toxicities. In spite of all these hurdles, researchers and experts in hepatology have strived to expand knowledge and scientific discourse, particularly on ALD and its associated complications through the medium of scientific research, reviews and commentaries. Nonetheless, the molecular mechanisms underpinning ALD, particularly those underlying toxic effects of metabolic derivatives of alcohol on parenchymal and non-parenchymal hepatic cells leading to increased risk of alcohol-induced fibro-hepatocarcinogenesis, are still incompletely elucidated. In this review, we examined published scientific findings on how alcohol and its metabolic derivatives mount cellular attack on each hepatic cell and the underlying molecular mechanisms leading to disruption of core hepatic homeostatic functions which probably set the stage for the initiation and progression of ALD to fibro-hepatocarcinogenesis. We also brought to sharp focus, the complex and integrative role of transforming growth factor beta/small mothers against decapentaplegic/plasminogen activator inhibitor-1 and the mitogen activated protein kinase signaling nexus as well as their cross-signaling with toll-like receptor-mediated gut-dependent signaling pathways implicated in ALD and fibro-hepatocarcinogenesis. Looking into the future, it is hoped that these deliberations may stimulate new research directions on this topic and shape not only therapeutic approaches but also models for studying ALD and fibro-hepatocarcinogenesis.
Collapse
|
7
|
Li KC, Ho YL, Huang GJ, Chang YS. Anti-Oxidative and Anti-Inflammatory Effects of Lobelia chinensis In Vitro and In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:269-87. [PMID: 25787301 DOI: 10.1142/s0192415x15500184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lobelia chinensis Lour (LcL) is a popular herb that has been widely used as folk medicine in China for the treatment of fever, lung cancer, and inflammation for hundreds of years. Recently, several studies have shown that the anti-inflammatory properties were correlated with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from the NF-κB pathway. The aim of this study was to evaluate the anti-oxidative and anti-inflammatory activities of L. chinensis. Both suppressive activities on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and the acute rat lung injury model in vivo were studied. The results showed that the methanol extract of LcL and its fractions within the range of 62.5–250 μg/mL did not induce cytotoxicity (p < 0.001). The ethyl acetate fraction of LcL showed better NO inhibition activity than other fractions. On the other hand, the Lc-EA (62.5, 125, 250 mg/kg) pretreated rats showed a decrease in the pro-inflammatory cytokines (TNF-α, IL-β, IL-6) and inhibited iNOS, COX-2 expression through the NF-κB pathway. These results suggested that L. chinensis exhibited an anti-inflammatory effect through the NF-κB pathways.
Collapse
Affiliation(s)
- Kun-Cheng Li
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University Hospital, Taichung 404, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University Hospital, Taichung 404, Taiwan
- Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
8
|
|
9
|
Hiradeve SM, Rangari VD. Elephantopus scaber Linn.: A review on its ethnomedical, phytochemical and pharmacological profile. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Hiradeve SM, Rangari VD. A review on pharmacology and toxicology of Elephantopus scaber Linn. Nat Prod Res 2014; 28:819-30. [DOI: 10.1080/14786419.2014.883394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sachin M. Hiradeve
- School of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur 495009, Chhattisgarh, India
| | - Vinod D. Rangari
- School of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
11
|
Hu G, Liu J, Zhen YZ, Wei J, Qiao Y, Lin YJ, Tu P. Rhein inhibits the expression of vascular cell adhesion molecule 1 in human umbilical vein endothelial cells with or without lipopolysaccharide stimulation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:473-85. [PMID: 23711136 DOI: 10.1142/s0192415x13500341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reducing the expression of endothelial cell adhesion molecules (ECAMs) is known to decrease inflammation-induced vascular complications. In this study, we explored whether rhein can reduce the inflammation-induced expression of ECAMs in human umbilical vein endothelial cells (HUVECs) with or without lipopolysaccharide (LPS) stimulation. HUVECs were treated with different concentrations of rhein with or without 2.5 μg/ml LPS stimulation. Cell viability was assayed using the MTT method. Real-time PCR and Western blot analysis were used to measure the transcription and expression levels of ECAMs, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-SELECTIN and related signaling proteins. The results indicated that rhein (0-20 μmol/L) and LPS (0-10 μg/ml) had no effect on the viability of HUVECs. LPS could promote the expression of VCAM-1, ICAM-1 and E-SELECTIN. Rhein appeared to target VCAM-1, ICAM-1 and E-SELECTIN, with the transcription and expression of all three factors being reduced by the rhein treatment (10 and 20 μmol/L). The transcription and expression of VCAM-1 were also reduced by treatment with rhein (10 and 20 μmol/L) in the presence of LPS stimulation. In conclusion, rhein treatment reduced the expression of VCAM-1 in HUVECs via a p38-dependent pathway.
Collapse
Affiliation(s)
- Gang Hu
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Hepatoprotective Activity of Elephantopus scaber on Alcohol-Induced Liver Damage in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:417953. [PMID: 22973401 PMCID: PMC3437691 DOI: 10.1155/2012/417953] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022]
Abstract
Elephantopus scaber has been traditionally used as liver tonic. However, the protective effect of E. scaber on ethanol-induced liver damage is still unclear. In this study, we have compared the in vivo hepatoprotective effect of E. scaber with Phyllanthus niruri on the ethanol-induced liver damage in mice. The total phenolic and total flavanoid content of E. scaber ethanol extract were determined in this study. Accelerating serum biochemical profiles (including AST, ALT, ALP, triglyceride, and total bilirubin) associated with fat drop and necrotic body in the liver section were observed in the mice treated with ethanol. Low concentration of E. scaber was able to reduce serum biochemical profiles and the fat accumulation in the liver. Furthermore, high concentration of E. scaber and positive control P. niruri were able to revert the liver damage, which is comparable to the normal control. Added to this, E. scaber did not possess any oral acute toxicity on mice. These results suggest the potential effect of this extract as a hepatoprotective agent towards-ethanol induced liver damage without any oral acute toxicity effect. These activities might be contributed, or at least in part, by its high total phenolic and flavonoid contents.
Collapse
|