1
|
Lee HY, Jung JE, Yim M. Iris Koreana NAKAI Inhibits Osteoclast Formation via p38-Mediated Nuclear Factor of Activated T Cells 1 Signaling Pathway. J Bone Metab 2023; 30:253-262. [PMID: 37718903 PMCID: PMC10509031 DOI: 10.11005/jbm.2023.30.3.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Iris Koreana NAKAI (IKN) is a flowering perennial plant that belongs to the Iridaceae family. In this study, we aimed to demonstrate the effects of IKN on osteoclast differentiation in vitro and in vivo. We also sought to verify the molecular mechanisms underlying its anti-osteoclastogenic effects. METHODS Osteoclasts were formed by culturing mouse bone marrow macrophage (BMM) cells with macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). Bone resorption assays were performed on dentin slices. mRNA expression levels were analyzed by quantitative polymerase chain reaction. Western blotting was performed to detect protein expression or activation. Lipopolysaccharide (LPS)-induced osteoclast formation was performed using a mouse calvarial model. RESULTS In BMM cultures, an ethanol extract of the root part of IKN suppressed RANKL-induced osteoclast formation and bone resorptive activity. In contrast, an ethanol extract of the aerial parts of IKN had a minor effect on RANKL-induced osteoclast formation. Mechanistically, the root part of IKN suppressed RANKL-induced p38 mitogen-activated protein kinase (MAPK) activation, effectively abrogating the induction of c-Fos and nuclear factor of activated T cells 1 (NFATc1) expression. IKN administration decreased LPS-induced osteoclast formation in a calvarial osteolysis model in vivo. CONCLUSIONS Our study suggested that the ethanol extract of the root part of IKN suppressed osteoclast differentiation and function partly by downregulating the p38 MAPK/c-Fos/NFATc1 signaling pathways. Thus, the root part.
Collapse
Affiliation(s)
- Hwa-Yeong Lee
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Ji-Eun Jung
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
2
|
Michalak A, Krauze-Baranowska M, Migas P, Kawiak A, Kokotkiewicz A, Królicka A. Iris pseudacorus as an easily accessible source of antibacterial and cytotoxic compounds. J Pharm Biomed Anal 2020; 195:113863. [PMID: 33412463 DOI: 10.1016/j.jpba.2020.113863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Iris pseudacorus is one of the most widespread iris species and possesses complex secondary metabolites. Our study showed that its rhizomes are abundant with phenolic compounds of which 80 % belong to the tannin group. Methanolic extracts from garden cultured iris rhizomes possessed antibacterial activity against human Gram positive Staphylococcus aureus and Enterococcus faecalis and Gram negative Pseudomonas aeruginosa and Klebsiella pneumoniae pathogens including clinical isolates resistant to commercially available antibiotics. Moreover the extract from rhizome, in concentration 3.125 mg dry weight/mL, containing gallocatechin (1), effectively combats S. aureus biofilm. The same rhizome extract acts against human cancer cell lines, especially against estrogen positive MCF-7 breast cancer cell line (IC50 = 11.75 μg/mL). In vitro culture of excised, anatomical roots of I. pseudacorus excreted three antistaphylococcal compounds into the plant medium, detected by using TLC-overlayer bioautography. By the use of HPLC-DAD-ESIMS system 2 active compounds were identified as 5,7,4'-trihydroxy-6,3'-dimethoxy-isoflavone (7) and unknown dimethoxy-dihydroxy-isoflavone (9). I. pseudacorus as a non-edible plant might be considered to be new, easy accessible, non-wood source of biologically active polyphenolics.
Collapse
Affiliation(s)
- Angelika Michalak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Laboratory of Biologically Active Compounds, Abrahama 58, 80-307, Gdansk, Poland
| | - Mirosława Krauze-Baranowska
- Medical University of Gdansk, Department of Pharmacognosy With Medicinal Plant Garden, J. Hallera 107, 80-416, Gdansk, Poland
| | - Piotr Migas
- Medical University of Gdansk, Department of Pharmacognosy With Medicinal Plant Garden, J. Hallera 107, 80-416, Gdansk, Poland
| | - Anna Kawiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Laboratory of Plant Protection and Biotechnology, Abrahama 58, 80-307, Gdansk, Poland
| | - Adam Kokotkiewicz
- Medical University of Gdansk, Department of Pharmacognosy With Medicinal Plant Garden, J. Hallera 107, 80-416, Gdansk, Poland
| | - Aleksandra Królicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Laboratory of Biologically Active Compounds, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
3
|
Mykhailenko O, Korinek M, Ivanauskas L, Bezruk I, Myhal A, Petrikaitė V, El-Shazly M, Lin GH, Lin CY, Yen CH, Chen BH, Georgiyants V, Hwang TL. Qualitative and Quantitative Analysis of Ukrainian Iris Species: A Fresh Look on Their Antioxidant Content and Biological Activities. Molecules 2020; 25:molecules25194588. [PMID: 33050063 PMCID: PMC7582944 DOI: 10.3390/molecules25194588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 01/13/2023] Open
Abstract
The major groups of antioxidant compounds (isoflavonoids, xanthones, hydroxycinnamic acids) in the rhizome methanol extracts of four Ukrainian Iris sp. (Iris pallida, Iris hungarica, Iris sibirica, and Iris variegata) were qualitatively and quantitatively analyzed using HPLC-DAD and UPLC-MS/MS. Gallic acid, caffeic acid, mangiferin, tectoridin, irigenin, iristectorigenin B, irisolidone, 5,6-dihydroxy-7,8,3',5'-tetramethoxyisoflavone, irisolidone-7-O-β-d-glucopyranoside, germanaism B, and nigricin were recognized by comparing their UV/MS spectra, chromatographic retention time (tR) with those of standard reference compounds. I. hungarica and I. variegata showed the highest total amount of phenolic compounds. Germanaism B was the most abundant component in the rhizomes of I. variegata (7.089 ± 0.032 mg/g) and I. hungarica (6.285 ± 0.030 mg/g). The compound analyses showed good calibration curve linearity (r2 > 0.999) and low detection and quantifications limit. These results validated the method for its use in the simultaneous quantitative evaluation of phenolic compounds in the studied Iris sp. I. hungarica and I. variegata rhizomes exhibited antioxidant activity, as demonstrated by the HPLC-ABTS system and NRF2 expression assay and anti-inflammatory activity on respiratory burst in human neutrophils. Moreover, the extracts showed anti-allergic and cytotoxic effects against cancer cells. Anti-coronavirus 229E and lipid formation activities were also evaluated. In summary, potent antioxidant marker compounds were identified in the examined Iris sp.
Collapse
Affiliation(s)
- Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska st., 61168 Kharkiv, Ukraine; (O.M.); (I.B.); (A.M.)
| | - Michal Korinek
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.K.); (B.-H.C.)
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT 44307 Kaunas, Lithuania;
| | - Ivan Bezruk
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska st., 61168 Kharkiv, Ukraine; (O.M.); (I.B.); (A.M.)
| | - Artem Myhal
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska st., 61168 Kharkiv, Ukraine; (O.M.); (I.B.); (A.M.)
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo 11835, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| | - Guan-Hua Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-H.L.); (C.-Y.L.)
| | - Chia-Yi Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-H.L.); (C.-Y.L.)
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.K.); (B.-H.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- The Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentinivska st., 61168 Kharkiv, Ukraine; (O.M.); (I.B.); (A.M.)
- Correspondence: (V.G.); (T.-L.H.); Tel.: +380572-67-91-97 (V.G.); +886-3-2118800 (ext. 5523) (T.-L.H.)
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (V.G.); (T.-L.H.); Tel.: +380572-67-91-97 (V.G.); +886-3-2118800 (ext. 5523) (T.-L.H.)
| |
Collapse
|
4
|
Zhang X, Yang R, Long J, He B, Zhang Y, Fu T, Shen Z, Chen P. A novel effect of geraniin on OPG/RANKL signaling in osteoblasts. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000317567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - Jiang Long
- First Affiliated Hospital of Kunming Medical University, P.R. China
| | - Bo He
- Kunming Medical University, P.R. China
| | - Yue Zhang
- Kunming Medical University, P.R. China
| | - Ting Fu
- Kunming Medical University, P.R. China
| | | | - Peng Chen
- Kunming Medical University, P.R. China
| |
Collapse
|