1
|
Chen J, Chu Z, Zhang Q, Wang C, Luo P, Zhang Y, Xia F, Gu L, Wong YK, Shi Q, Xu C, Tang H, Wang J. STEP: profiling cellular-specific targets and pathways of bioactive small molecules in tissues via integrating single-cell transcriptomics and chemoproteomics. Chem Sci 2024; 15:4313-4321. [PMID: 38516082 PMCID: PMC10952072 DOI: 10.1039/d3sc04826h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Identifying the cellular targets of bioactive small molecules within tissues has been a major concern in drug discovery and chemical biology research. Compared to cell line models, tissues consist of multiple cell types and complicated microenvironments. Therefore, elucidating the distribution and heterogeneity of targets across various cells in tissues would enhance the mechanistic understanding of drug or toxin action in real-life scenarios. Here, we present a novel multi-omics integration pipeline called Single-cell TargEt Profiling (STEP) that enables the global profiling of protein targets in mammalian tissues with single-cell resolution. This pipeline integrates single-cell transcriptome datasets with tissue-level protein target profiling using chemoproteomics. Taking well-established classic drugs such as aspirin, aristolochic acid, and cisplatin as examples, we confirmed the specificity and precision of cellular drug-target profiles and their associated molecular pathways in tissues using the STEP analysis. Our findings provide more informative insights into the action modes of bioactive molecules compared to in vitro models. Collectively, STEP represents a novel strategy for profiling cellular-specific targets and functional processes with unprecedented resolution.
Collapse
Affiliation(s)
- Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Zheng Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yin Kwan Wong
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology Shenzhen 518020 China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology Shenzhen 518020 China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University Kaifeng 475004 China
| |
Collapse
|
2
|
Gu EY, Jung J, Back SM, Lim KH, Kim W, Min BS, Han KH, Kim SK, Kim YB. Evaluation of genotoxicity and 13-week subchronic toxicity of root of Asarum heterotropoides var. seoulense (Nakai) Kitag. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116012. [PMID: 36567041 DOI: 10.1016/j.jep.2022.116012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asarum heterotropoides var. seoulense (Nakai) Kitag is a traditional herbal medicine used in Korea and China. It is effective in aphthous stomatitis, local anesthesia, headache, toothache, gingivitis, and inflammatory diseases. However, information on the toxicity of the root of Asarum heterotropoides var. seoulense (Nakai) Kitag (AR) is limited. Therefore, preclinical toxicity studies on AR are needed to reduce the risk of excessive intake. AIM OF THE STUDY We aimed to evaluate genotoxicity and the potential toxicity due to repeated administration of AR powder. MATERIALS AND METHODS In vitro bacterial reverse mutation assay (Ames), in vitro chromosomal aberration assay (CA), and in vivo micronucleus (MN) assay in ICR mice were conducted. As positive results were obtained in Ames and CA assays, alkaline comet assay and pig-a gene mutation test were conducted for confirmation. For evaluating the general toxicity of AR powder, a 13-week subchronic toxicity test was conducted, after determining the dose by performing a single and a 4-week dose range finding (DRF) test. A total of 152 Sprague-Dawley (SD) rats were orally administered AR powder at doses of 0, 150, 350, 500, 1000, and 2000 mg/kg/day in the 13-week subchronic toxicity test. Hematology, clinical chemistry, urinalysis, organ weight, macro-, and microscopic examination were conducted after rat necropsy. RESULTS AR powder induced genotoxicity evidenced in the Ames test at 187.5, 750, 375, and 1500 μg/plate of TA100, TA98, TA1537, and E. coli WP2uvrA in the presence and absence of S9, respectively; CA test at 790 μg/mL for 6 h in the presence of S-9; 75 μg/mL for 6 h in the absence of S-9, and 70 μg/mL for 22 h in the absence of S-9 in the stomach in the comet assay but not in MN and pig-a assays. In the 13-week subchronic toxicity study, clinical signs including irregular respiration, noisy respiration, salivation, and decreased body weight or food consumption were observed in males and females in the 2000 mg/kg/day group. In hematology tests, clinical chemistry, urinalysis, organ weight, and macroscopic examination, changes were observed in the dose groups of 500 mg/kg/day and above. Microscopic examination revealed hyperplasia of the stomach as a test-related change. Hepatocellular adenoma and changes in liver-related clinical chemistry parameters were observed. The rat No Observed Adverse Effect Level (NOAEL) was 150 mg/kg/day in males and <150 mg/kg/day in females. CONCLUSIONS AR powder is potentially toxic to the liver and stomach and should be used with caution in humans. A long-term study on carcinogenicity is necessitated because DNA damage or changes in tissue lesions were observed in SD rats.
Collapse
Affiliation(s)
- Eun-Young Gu
- College of Pharmacy, Chung-Nam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea; Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Jina Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Seng-Min Back
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Kwang-Hyun Lim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Byung Sun Min
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongbuk, 38430, Republic of Korea.
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chung-Nam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
3
|
Li J, Wang H, Zhu J, Yang Q, Luan Y, Shi L, Molina-Mora JA, Zheng Y. De novo assembly of a chromosome-level reference genome of the ornamental butterfly Sericinus montelus based on nanopore sequencing and Hi-C analysis. Front Genet 2023; 14:1107353. [PMID: 36968580 PMCID: PMC10030965 DOI: 10.3389/fgene.2023.1107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Sericinus montelus (Lepidoptera, Papilionidae, Parnassiinae) is a high-value ornamental swallowtail butterfly species widely distributed in Northern and Central China, Japan, Korea, and Russia. The larval stage of this species feeds exclusively on Aristolochia plants. The Aristolochia species is well known for its high levels of aristolochic acids (AAs), which have been found to be carcinogenic for numerous animals. The swallowtail butterfly is among the few that can feed on these toxic host plants. However, the genetic adaptation of S. montelus to confer new abilities for AA tolerance has not yet been well explored, largely due to the limited genomic resources of this species. This study aimed to present a chromosome-level reference genome for S. montelus using the Oxford Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C technology. The final assembly was composed of 581.44 Mb with an expected genome size of 619.27 Mb. Further, 99.98% of the bases could be anchored onto 30 chromosomes. The N50 of contigs and scaffolds was 5.74 and 19.12 Mb, respectively. Approximately 48.86% of the assembled genome was suggested to be repeat elements, and 13,720 protein-coding genes were predicted in the current assembly. The phylogenetic analysis indicated that S. montelus diverged from the common ancestor of swallowtails about 58.57-80.46 million years ago. Compared with related species, S. montelus showed a significant expansion of P450 gene family members, and positive selections on eloa, heatr1, and aph1a resulted in the AA tolerance for S. montelus larva. The de novo assembly of a high-quality reference genome for S. montelus provided a fundamental genomic tool for future research on evolution, genome genetics, and toxicology of the swallowtail butterflies.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Grandomics Biosciences Institute, Wuhan, China
| | - Haiyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | | | - Qi Yang
- Grandomics Biosciences Institute, Wuhan, China
| | - Yang Luan
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - José Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- *Correspondence: José Arturo Molina-Mora, ; Yuanting Zheng,
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- *Correspondence: José Arturo Molina-Mora, ; Yuanting Zheng,
| |
Collapse
|
4
|
Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies. Antibodies (Basel) 2021; 10:antib10040048. [PMID: 34940000 PMCID: PMC8698370 DOI: 10.3390/antib10040048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/09/2021] [Accepted: 11/30/2021] [Indexed: 01/31/2023] Open
Abstract
In this study, we present a review on a useful approach, namely, immunoaffinity column coupled with monoclonal antibodies (MAbs), to separate natural compounds and its application for cell-based studies. The immunoaffinity column aids in separating the specific target compound from the crude extract. The column capacity was stable even after more than 10 purification cycles of use under the same conditions. After applying the crude extract to the column, the column was washed with washing buffer and eluted with elution buffer. The elution fraction contained the target compound bound to MAb, whereas the washing fraction was the crude extract, which contained all compounds except a group of target compounds; therefore, the washing fraction was referred to as a knockout (KO) crude extract. Cell-based studies using the KO extract revealed the actual effects of the natural compounds in the crude extract. One-step separation of natural compounds using the immunoaffinity column coupled with MAbs may help in determining the potential functions of natural compounds in crude extracts.
Collapse
|
5
|
Shoyama Y. Studies on Natural Products Using Monoclonal Antibodies: A Review. Antibodies (Basel) 2021; 10:43. [PMID: 34842627 PMCID: PMC8628510 DOI: 10.3390/antib10040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
An immunoblotting system ("eastern blotting") was developed for small-molecule herbal medicines like glycosides, with no conjugation function to the membrane. Briefly, the crude extracts of herb medicines were developed by thin-layer chromatography (TLC). The small-molecule herbal medicines on TLC plates were transferred to polyvinylidene fluoride (PVDF) or polyethersulfone (PES) membranes by heating. Antigen components were divided into two categories based on their function, i.e., their membrane recognizing (aglycone part) and fixing (sugar moiety) abilities. This procedure allows for the staining of only target glycosides. Double eastern blotting was developed as a further staining system for two herb medicines using a set of MAbs and substrates.
Collapse
Affiliation(s)
- Yukihiro Shoyama
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
6
|
Sidorenko VS. Biotransformation and Toxicities of Aristolochic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:139-166. [PMID: 32383120 DOI: 10.1007/978-3-030-41283-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Liu X, Wu J, Wang J, Feng X, Wu H, Huang R, Fan J, Yu X, Yang X. Mitochondrial dysfunction is involved in aristolochic acid I-induced apoptosis in renal proximal tubular epithelial cells. Hum Exp Toxicol 2019; 39:673-682. [PMID: 31884831 DOI: 10.1177/0960327119897099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aristolochic acid (AA) is a compound extracted from the Aristolochia species of herbs. AA exposure is associated with kidney injury known as aristolochic acid nephropathy (AAN). Proximal tubular epithelial cell (PTEC) is the primary target of AA and rich in mitochondria. Recently, increasing evidence suggests that mitochondrial dysfunction plays a critical role in the pathogenesis of kidney disease. However, the status of mitochondrial function in PTEC after exposure to AA remains largely unknown. The aim of this study was to explore the effect of aristolochic acid I (AAI) on cell apoptosis and mitochondrial function in PTEC. Normal rat kidney-52E (NRK-52E) cells were exposed to different concentrations of AAI for different time periods. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, cell apoptosis was analyzed by flow cytometry, and the expression of cleaved caspase-3 by Western blotting. Mitochondrial function was evaluated by reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP). It was found that AAI reduced cell viability and increased cell apoptosis in a dose- and time-dependent manner. In parallel to increased apoptosis, NRK-52E cell manifested signs of mitochondrial dysfunction in response to AAI treatment. The data indicated that AAI could increase ROS level, lower MMP, decrease mtDNA copy number, and reduce ATP production. In addition, Szeto-Schiller 31, a mitochondria-targeted antioxidant peptide, attenuated AAI-induced mitochondrial dysfunction and apoptosis. Our study depicted significant aberrant of mitochondrial function in AAI-treated NRK-52E cell, which suggested that mitochondrial dysfunction may be involved in AAI-induced apoptosis in PTEC.
Collapse
Affiliation(s)
- X Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - J Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China.,Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - J Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - X Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - H Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - R Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - J Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - X Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - X Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
New Contributions to Asarum Powder on Immunology Related Toxicity Effects in Lung. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1054032. [PMID: 30245729 PMCID: PMC6139235 DOI: 10.1155/2018/1054032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 01/11/2023]
Abstract
Objective. Asarum is widely used in clinical practice of Chinese medicine in the treatment of respiratory diseases. Many toxic ingredients (safrole, etc.) had been found in Asarum that show multiple visceral toxicities. In this study, we performed systematic investigation of expression profiles of genes to take a new insight into unclear mechanism of Asarum toxicities in lung. Methods. mRNAs were extracted from lungs of rats after intragastric administration with/without Asarum powders, and microarray assays were applied to investigate gene expression profiles. Differentially expressed genes with significance were selected to carry out GO analysis. Subsequently, quantitative PCRs were performed to verify the differential expression of Tmprss6, Prkag3, Nptx2, Antxr11, Klk11, Rag2, Olr77, Cd7, Il20, LOC69, C6, Ccl20, LOC68, and Cd163 in lung. Changes of Ampk, Bcl2, Caspase 3, Il1, Il20, Matriptase2, Nfκb, Nptx2, and Rag2 in the lung on protein level were verified by western blotting and immunohistochemistry. Results. Compared with control group, the estimated organ coefficients were relatively increased in Asarum group. Results of GO analysis showed that a group of immune related genes in lung were expressed abnormally. The result of PCRs showed that Ccl20 was downregulated rather than other upregulated genes in the Asarum group. Western blotting and immunohistochemistry images showed that Asarum can upregulate the expression of Ampk, Caspase 3, Il1, Il20, Matriptase2, Nfκb, and Rag2 and downregulate the expression of Bcl2 in lung. Conclusion. Our data suggest that expressions of immune related genes in lung were selectively altered by Asarum. Therefore, inflammatory response was active, by regulating Caspase 3, Il1, Il20, Matriptase2, Nfκb, Rag2, Tmprss6, Prkag3, Nptx2, Antxr1, Klk11, Olr77, Cd7, LOC69, C6, LOC68, Cd163, Ampk, Bcl2, and Ccl20. Our study indicated that inflammatory factors take effect in lung toxicity caused by Asarum, which provides a new insight into molecular mechanism of Asarum toxicities in lung.
Collapse
|
9
|
Cui Q, Tanaka H, Shoyama Y, Ye HT, Li F, Tian EW, Wu YS, Chao Z. Development of a Competitive Time-Resolved Fluoroimmunoassay for Paclitaxel. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:284-289. [PMID: 29266486 DOI: 10.1002/pca.2741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Paclitaxel (Tax) is a diterpene alkaloid isolated from Taxus species and has proved clinically effective in treating a number of malignancies. Current quantitative analytical methods for Tax such as high-performance liquid chromatography (HPLC) often involve complicated sample preparation procedures with low recovery rates. OBJECTIVE To establish a rapid and sensitive time-resolved fluoroimmunoassay (TRFIA) for measuring Tax in Taxus materials with convenient sample preparation and a high recovery rate. METHODS Rabbit anti-mouse IgG was coated onto a 96-well microplate, which was then incubated with standard solutions of Tax and anti-Tax monoclonal antibody 3A3. A Eu3+ -labelled conjugate of Tax and human serum albumin was used as the tracer. The luminescent system was enhanced with a solution containing 2-naphthoyltrifluoroacetone. RESULTS The established TRFIA showed a linear response within the Tax concentration range of 3.2 to 80 ng/mL, with a limit of detection of 1.4 ng/mL. The intra- and inter-assay coefficient of variation of the assay was 9.6% and 9.7%, respectively, with an average recovery rate from spiked samples of 108.5%. Tax contents in Taxus samples were determined using both the established TRFIA system and a previously established enzyme-linked immunosorbent (ELISA), and the results of two assays were well correlated. CONCLUSION This TRFIA system shows a high sensitivity, precision and accuracy for detection of Tax. This assay, which is convenient and less time-consuming, allows rapid analysis of Tax and provides another option for Tax measurement for quality control of Taxus materials and products. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qian Cui
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hiroyuki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Hao-Ting Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fang Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - En-Wei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Song Wu
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Zhang WJ, Wang JY, Li H, He X, Zhang RQ, Zhang CF, Li F, Yang ZL, Wang CZ, Yuan CS. Novel Application of Natural Anisole Compounds as Enhancers for Transdermal Delivery of Ligustrazine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1231-46. [PMID: 26446204 DOI: 10.1142/s0192415x15500706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To improve the transdermal delivery of ligustrazine, Foeniculum vulgare food origin anisole compounds were employed as promoters. Transdermal fluxes of ligustrazine were determined by Franz-type diffusion cells. Fourier transform-infrared (FT-IR) spectra were used to detect the biophysical changes of the stratum corneum and to explore the mechanism of permeation enhancement. A scanning electron microscope (SEM) was used to monitor the morphological changes of the skin. Among the three anisoles, anisic acid increased the penetration flux of ligustrazine significantly. The ligustrazine flux with anisic acid (11.9 μg/cm(2)/h) was higher than that any other group (p < 0.05). Spectra observations revealed that these anisole enhancers were able to disturb and extract the stratum corneum lipids. In addition, apparent density was used to describe the desquamation extent of the scutella. Multiple mechanisms are involved in the permeation enhancement of ligustrazine, including disturbing and extracting stratum corneum lipid, forming a competitive hydrogen bond. All data suggested that anisole compounds could be a group of safe and active penetration enhancers for transdermal delivery of ligustrazine.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jiao-Ying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xin He
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, China
| | - Run-Qi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chun-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.,Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Zhong-Lin Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Xu XL, Yang LJ, Jiang JG. Renal toxic ingredients and their toxicology from traditional Chinese medicine. Expert Opin Drug Metab Toxicol 2016; 12:149-59. [PMID: 26670420 DOI: 10.1517/17425255.2016.1132306] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION There have been increasing concerns regarding adverse reactions and toxicity incidents caused by traditional Chinese medicines (TCMs), among which the nephrotoxicity is particularly worrying. AREAS COVERED This review summarizes the ingredients with renal toxicity from some TCMs through searching the relevant literature published over the past two decades. Renal toxicity components from TCMs include aristolochic acids (AAS), alkaloids, anthraquinones and others. TCM renal toxicity is most commonly caused by AAS and some alkaloids. AAS mainly come from Aristolochia contorta Bunge, Aristolochia manshuriensis Kom, Clematis Chinensis Osbeck, Aristolochia cathcartii Hook. Some renal toxic alkaloids are derived from Tripterygium regelii Sprague et Takeda, Stephania tetrandra S. Moore, Strychnos nux-vomica Linn. and Aconitum carmichaeli Debx. A few kinds of anthraquinones, flavonoids, and glycosides from TCMs also cause renal toxicity. All of these renal toxicity components and their associated renal toxicity, structures and toxic mechanism are introduced in detail in this review. EXPERT OPINION Given the complexity of the toxic components, a lot of work needs to be done to analyze the specific modes of action of toxic components in vivo and in vitro, in particular, to elucidate the molecular mechanism of toxicity, in order to reduce the occurrence of renal toxicity of TCM.
Collapse
Affiliation(s)
- Xi-Lin Xu
- a College of Food and Bioengineering , South China University of Technology , Guangzhou , China
| | - Lin-Jiang Yang
- a College of Food and Bioengineering , South China University of Technology , Guangzhou , China
| | - Jian-Guo Jiang
- a College of Food and Bioengineering , South China University of Technology , Guangzhou , China
| |
Collapse
|