1
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Effect of ropivacaine on peripheral neuropathy in streptozocin diabetes-induced rats through TRPV1-CGRP pathway. Biosci Rep 2020; 39:220953. [PMID: 31661547 PMCID: PMC6851513 DOI: 10.1042/bsr20190817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Objective To determine the effect of ropivacaine on peripheral neuropathy in diabetic rats and its possible mechanism. Methods Forty-eight Sprague–Dawley rats were randomly divided into six groups: nondiabetic control group, nondiabetic group A (0.25% ropivacaine), nondiabetic group B (0.75% ropivacaine), diabetic control group (diabetic peripheral neuropathy (DPN) +artificial cerebrospinal fluid), diabetic group A (DPN+0.25% ropivacaine), and diabetic group B (DPN + 0.75% ropivacaine), with eight rats in each group. Within an hour of the last administration, the sciatic motor nerve conduction velocity (MNCV) of each group was measured, and the morphological changes of rat sciatic nerve were observed by HE, Weil’s staining and electron microscopy. The expression of transient receptor potential vanilloid (TRPV1) in the spinal cord dorsal horn of rats was analyzed by immunohistochemistry, and the expression of Calcitonin gene-related peptide (CGRP) protein in the spinal cord was analyzed by Western blot. Results Compared with the nondiabetic control group, elevated blood glucose, decreased weight and reduced average mechanical withdrawal threshold (MWT), additionally, the sciatic nerves showed significantly slowed conduction velocity (both P<0.001) and damaged pathological structure, the expression of TRPV1 and CGRP were decreased (both P<0.001) in the diabetic groups. Compared with the diabetic control group, down-regulation of TRPV1 and CGRP in spinal cord was significant for the diabetic groups A and B treated with 0.25 and 0.75% ropivacaine, the higher concentration of ropivacaine correlated with a greater change. Conclusion Ropivacaine can significantly block sciatic nerve conduction velocity in DPN rats in a concentration-dependent manner, which may be related to the expression of the TRPV1-CGRP pathway.
Collapse
|
3
|
Abstract
Currently, there are no established adjuvant drugs for the acceleration of peripheral nerve regeneration. In this paper, we reviewed the literature from the last 10 years and described the drugs proved to accelerate the functional and histological regeneration of the peripheral nerves, either after trauma or in neuropathy experimental models. The vast majority of the studies were experimental with very few small clinical studies, which indicates the need for prospective randomized studies to identify the best drugs to use as adjuvants for nerve regeneration.
Collapse
Affiliation(s)
- Olimpiu Bota
- Department of Plastic and Hand Surgery, University Center of Orthopedics and Trauma Surgery, University Hospital Carl Gustav Carus , Dresden , Germany
| | - Lucian Fodor
- Department of Plastic Surgery, First Surgical Clinic, Emergency District Hospital , Cluj-Napoca , Romania
| |
Collapse
|
4
|
Earthworm protease in anti-thrombosis and anti-fibrosis. Biochim Biophys Acta Gen Subj 2019; 1863:379-383. [DOI: 10.1016/j.bbagen.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022]
|
5
|
Zhou X, Wang P, Chen Y, Ma SY. Intact anti-LPS IgY is found in the blood after intragastric administration in mice. FEBS Open Bio 2019; 9:428-436. [PMID: 30868051 PMCID: PMC6396156 DOI: 10.1002/2211-5463.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Severe burn injury and cirrhosis often cause the translocation of bacterial endotoxins into blood, leading to systemic damage and even death. Our previous studies have shown that anti‐lipopolysaccharide egg yolk antibody (anti‐LPS IgY) can neutralize bacterial endotoxins in vitro and in vivo effectively, thereby reducing endotoxin damage. Whether anti‐LPS IgY can be absorbed into the blood through the intestinal barrier and neutralize endotoxins in circulation remains unclear. In this study, we used in vivo small animal imaging techniques, protein purification, molecular biology, and mass spectrometry to show that intragastrically administered anti‐LPS IgY is detected in the blood of mice as an intact molecule and has the capacity to bind to LPS. Immunohistochemical analysis confirmed that anti‐LPS IgY is associated with the intestinal mucosa of mice. However, the route of absorption of this large protein molecule was not determined. This study suggests that anti‐LPS IgY can be absorbed into the circulation, with the same molecular mass as purified anti‐LPS IgY as a macromolecular protein, suggesting a new strategy for the prevention of damage caused by endotoxins.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Burn Research State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University) Chongqing China
| | - Pei Wang
- Institute of Burn Research State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University) Chongqing China
| | - Yajie Chen
- Institute of Burn Research State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University) Chongqing China
| | - Si-Yuan Ma
- Institute of Burn Research State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University) Chongqing China
| |
Collapse
|
6
|
Ghosh S. Environmental pollutants, pathogens and immune system in earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6196-6208. [PMID: 29327186 DOI: 10.1007/s11356-017-1167-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Earthworms also known as farmer's friends are natural tillers of soil. They belong to Phylum Annelida and class Oligochaeta. Acid soils with organic matter and surface humus maintain the largest fauna of worms and earthworms. Due to their habitat in soil, they are constantly exposed to microbes and pollution generated by anthropogenic sources. Studies have revealed that damage of the immune system of earthworms can lead to alterations of both morphological and cellular characteristics of worms, activation of signalling pathways and can strongly influence their survival. Therefore, the understanding of the robust immune system in earthworms has become very important from the point of view of understanding its role in combating pathogens and pollutants and its role in indicating the soil pollution. In this article, we have outlined the (i) components of the immune system and (ii) their function of immunological responses on exposure to pollutants and pathogens. This study finds importance from the point of view of ecotoxicology and monitoring of earthworm health and exploring the scope of earthworm immune system components as biomarkers of pollutants and environmental toxicity. The future scope of this review remains in understanding the earthworm immunobiology and indicating strong biomarkers for pollution.
Collapse
Affiliation(s)
- Shyamasree Ghosh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
7
|
Chen CC, Chang LC, Yao CH, Hsu YM, Lin JH, Yang TY, Chen YH, Chen YS. Increased Calcitonin Gene-Related Peptide and Macrophages Are Involved in Astragalus membranaceus-Mediated Peripheral Nerve Regeneration in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:69-86. [DOI: 10.1142/s0192415x18500040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Astragalus membranaceus (AM) is one of 50 fundamental herbs in traditional Chinese medicine. Previous studies have shown that AM extract can be a potential nerve growth-promoting factor, being beneficial for the growth of peripheral nerve axons. We further investigated the effects of AM extract on regeneration in a rat sciatic nerve transection model. Rats were divided into three groups ([Formula: see text]): normal saline (intraperitoneal) as the control, and 1.5[Formula: see text]g/kg or 3.0[Formula: see text]g/kg of AM extract (every other day for four weeks), respectively. We evaluated neuronal electrophysiology, neuronal connectivity, macrophage infiltration, expression levels and location of calcitonin gene-related peptide (CGRP), and expression levels of both nerve growth factors (NGFs) and immunoregulatory factors. In the high-dose AM group, neuronal electrophysiological function (measured by nerve conductive velocity and its latency) was significantly improved ([Formula: see text]). Expression levels of CGRP and macrophage density were also drastically enhanced ([Formula: see text]). Expression levels of fibroblast growth factor (FGF), NGF, platelet-derived growth factor (PDGF), transforming growth factor-[Formula: see text], interleukin-1 (IL-1), and interferon (IFN)-[Formula: see text] were reduced in the high-dose AM group ([Formula: see text]), while FGF, NGF, PDGF, IL-1, and IFN-[Formula: see text] were increased in the low-dose AM group ([Formula: see text]). These results suggest that AM can modulate local inflammatory conditions, enhance nerve regeneration, and potentially increase recovery of a severe peripheral nerve injury.
Collapse
Affiliation(s)
- Chung-Chia Chen
- Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Graduate Institute of Biomedical Sciences, School of Chinese Medicine, Department of Biological Science and Technology, Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Ling-Chuan Chang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Hsu Yao
- Biomaterials Translational Research Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Graduate Institute of Biomedical Sciences, School of Chinese Medicine, Department of Biological Science and Technology, Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Jia-Horng Lin
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
| | - Tse-Yen Yang
- Biomaterials Translational Research Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Biomedical Sciences, School of Chinese Medicine, Department of Biological Science and Technology, Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Graduate Institute of Biomedical Sciences, School of Chinese Medicine, Department of Biological Science and Technology, Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Biomaterials Translational Research Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Sui F, Zhou HY, Meng J, Du XL, Sui YP, Zhou ZK, Dong C, Wang ZJ, Wang WH, Dai L, Ma H, Huo HR, Jiang TL. A Chinese Herbal Decoction, Shaoyao-Gancao Tang, Exerts Analgesic Effect by Down-Regulating the TRPV1 Channel in a Rat Model of Arthritic Pain. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1363-1378. [PMID: 27785943 DOI: 10.1142/s0192415x16500762] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shaoyao-Gancao Tang (SGT) is one of the most frequently used compound formulas in the treatment of pain-related diseases in the medical practice of traditional Chinese medicine (TCM). To investigate the anti-inflammatory and antinociceptive effects, as well as to uncover the molecular mechanism of SGT, the rat pain model of arthritis was experimentally induced by single unilateral injection of rats' left hind paw with Freund's complete adjuvant (FCA). SGT was orally administered to the rats daily at three doses individually for a period of 16 days post-model induction. Swollen degrees and pain thresholds of the rats in different groups were measured for evaluation of the anti-inflammatory and anti-nociceptive effects of SGT. Furthermore, the mRNA and protein expression levels of transient receptor potential ion channel protein vanilloid receptor 1 (TRPV1) channel as well as its calcium-mediating function in the isolated DRG neurons were further detected to provide indexes for exploration of the molecular mechanisms mediating anti-arthritic activities of SGT. As a result, FCA injection induced significant allodynia, inflammation and edema, accompanied by a significant increase in both expression and calcium-mediating function of the TRPV1 channel. Pharmacologically, oral administration of SGT at a high or middle dose demonstrated a significant relief from the above-mentioned pathological conditions in a dose-dependent manner. Simultaneously the mRNA and protein expressional levels of TRPV1 channel, as well as its calcium-mediating function, were down-regulated greatly. These findings suggest that SGT possesses a significant analgesic and anti-inflammatory effect on arthritis rats; its therapeutic activities might be achieved through reversing the elevated expression and function of TRPV1 channel evoked by FCA.
Collapse
Affiliation(s)
- Feng Sui
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Yu Zhou
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Jing Meng
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Xin-Liang Du
- † Graduate School of China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yun-Peng Sui
- ‡ Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zhi-Kun Zhou
- § Department of Pharmacology, Guangdong Medical University, Guangzhou 523808, P.R. China
| | - Cheng Dong
- ¶ The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Zhu-Ju Wang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Wei-Hao Wang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li Dai
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai Ma
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Ru Huo
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Ting-Liang Jiang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|