1
|
Cao L, Wang X, Ma X, Xu M, Li J. Potential of natural products and gut microbiome in tumor immunotherapy. Chin Med 2024; 19:161. [PMID: 39567970 PMCID: PMC11580227 DOI: 10.1186/s13020-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Immunotherapy is a novel treatment approach for malignant tumors, which has opened a new journey of anti-tumor therapy. Although some patients will show a positive response to immunotherapy, unfortunately, most patients and cancer types do not achieve an ideal response to immunotherapy. Therefore, it is urgent to search for the pathogenesis of sensitized immunotherapy. This review indicates that Fusobacterium nucleatum, Coprobacillus cateniformis, Akkermansia muciniphila, Bifidobacterium, among others, as well as intestinal microbial metabolites are closely associated with resistance to anti-tumor immunotherapy. While natural products of pectin, inulin, jujube, anthocyanins, ginseng polysaccharides, diosgenin, camu-camu, and Inonotus hispidus (Bull).Fr. P. Karst, Icariside I, Safflower yellow, Ganoderma lucidum, and Ginsenoside Rk3, and other Chinese native medicinal compound prescriptions to boost their efficacy of anti-tumor immunotherapy through the regulation of microbiota and microbiota metabolites. However, current research mainly focuses on intestinal, liver, and lung cancer. In the future, natural products could be a viable option for treating malignant tumors, such as pancreatic, esophageal, and gastric malignancies, via sensitizing immunotherapy. Besides, the application characteristics of different types, sources and efficacy of natural products in different immune resistance scenarios also need to be further clarified through the development of future immunotherapy-related studies.
Collapse
Affiliation(s)
- Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Xinmiao Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Xinyi Ma
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China.
| |
Collapse
|
2
|
Ji HF, Yang ZQ, Han JJ, Li HF, Jin ZQ, Chen WQ, Chen FH, Gong MC. Safflower Yellow Inhibits Progression of Hepatocellular Carcinoma by Modulating Immunological Tolerance via FAK Pathway. Chin J Integr Med 2024; 30:339-347. [PMID: 37943489 DOI: 10.1007/s11655-023-3705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To explore the anti-tumor effect of safflower yellow (SY) against hepatocellular carcinoma (HCC) and the underlying potential mechanism. METHODS An in vitro model was established by mixing Luc-Hepa1-6 cells and CD3+CD8+ T cells, followed by adding programmed cell death protein 1 (PD-1) antibody (Anti-mPD-1) with or without SY. The apoptosis was detected by flow cytometry and the level of inflammatory cytokines was determined by enzyme-linked immunosorbent assay. The protein levels of programmed cell death 1 ligand 1 (PD-L1), chemokine ligand (CCL5), C-X-C motif chemokine ligand 10 (CXCL10) were measured by Western blot. An in situ animal model was established in mice followed by treatment with anti-mPD-1 with or without SY. Bioluminescence imaging was monitored with an AniView 100 imaging system. To establish the FAK-overexpressed Luc-Hepa1-6 cells, cells were transfected with adenovirus containing pcDNA3.1-FAK for 48 h. RESULTS The fluorescence intensity, apoptotic rate, release of inflammatory cytokines, and CCL5/CXCL10 secretion were dramatically facilitated by anti-mPD-1 (P<0.01), accompanied by an inactivation of PD-1/PD-L1 axis, which were extremely further enhanced by SY (P<0.05 or P<0.01). Increased fluorescence intensity, elevated percentage of CD3+CD8+ T cells, facilitated release of inflammatory cytokines, inactivated PD-1/PD-L1 axis, and increased CCL5/CXCL10 secretion were observed in Anti-mPD-1 treated mice (P<0.01), which were markedly enhanced by SY (P<0.05 or P<0.01). Furthermore, the enhanced effects of SY on inhibiting tumor cell growth, facilitating apoptosis and inflammatory cytokine releasing, suppressing the PD-1/PD-L1 axis, and inducing the CCL5/CXCL10 secretion in Anti-mPD-1 treated mixture of Luc-Hepa1-6 cells and CD3+CD8+ T cells were abolished by FAK overexpression (P<0.01). CONCLUSION SY inhibited the progression of HCC by mediating immunological tolerance through inhibiting FAK.
Collapse
Affiliation(s)
- Hua-Feng Ji
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Zi-Qiang Yang
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Jun-Jun Han
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - He-Fang Li
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Zhao-Qing Jin
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Wei-Qing Chen
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Fei-Hua Chen
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Mou-Chun Gong
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Pharmacological Activities of Safflower Yellow and Its Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2108557. [PMID: 35795285 PMCID: PMC9252638 DOI: 10.1155/2022/2108557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Background. Safflower is an annual herb used in traditional Chinese herbal medicine. It consists of the dried flowers of the Compositae plant safflower. It is found in the central inland areas of Asia and is widely cultivated throughout the country. Its resistance to cold weather and droughts and its tolerance and adaptability to salts and alkalis are strong. Safflower has the effect of activating blood circulation, dispersing blood stasis, and relieving pain. A natural pigment named safflower yellow (SY) can be extracted from safflower petals. Chemically, SY is a water-soluble flavonoid and the main active ingredient of safflower. The main chemical constituents, pharmacological properties, and clinical applications of SY are reviewed in this paper, thereby providing a reference for the use of safflower in preventing and treating human diseases. Methods. The literature published in recent years was reviewed, and the main chemical components of SY were identified based on chemical formula and structure. The pharmacological properties of hydroxysafflor yellow A (HSYA), SYA, SYB, and anhydrosafflor yellow B (AHSYB) were reviewed. Results. The main chemical constituents of SY included HSYA, SYA, SYB, and AHSYB. These ingredients have a wide range of pharmacological activities. SY has protective effects on the heart, kidneys, liver, nerves, lungs, and brain. Moreover, its effects include, but are not limited to, improving cardiovascular and cerebrovascular diseases, abirritation, regulating lipids, and treating cancer and diabetic complications. HSYA is widely recognised as an effective ingredient to treat cardiovascular and cerebrovascular diseases. Conclusion. SY has a wide range of pharmacological activities, among which improving cardiovascular and cerebrovascular diseases are the most significant.
Collapse
|
4
|
Jiang H, Li M, Du K, Ma C, Cheng Y, Wang S, Nie X, Fu C, He Y. Traditional Chinese Medicine for adjuvant treatment of breast cancer: Taohong Siwu Decoction. Chin Med 2021; 16:129. [PMID: 34857023 PMCID: PMC8638166 DOI: 10.1186/s13020-021-00539-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
The high incidence of breast cancer is the greastest threat to women' health all over the world. Among them, HER-2 positive breast cancer has the characteristics of high malignancy, easy recurrence and metastasis, and poor prognosis. Traditional Chinese medicine (TCM) has a rich theoretical basis and clinical application for breast cancer. TCM believes that blood stasis syndrome is one of the important pathogenesis of breast formation and development. Taohong Siwu Decoction (TSHWD) is based on the "First Prescription of Gynecology" Siwu Decoction. It is widely used in various blood stasis and blood deficiency syndromes, mainly in gynecological blood stasis. Clinical studies have found that THSWD can treat breast cancer by reducing blood vessel and lymphangiogenesis with auxiliary chemotherapy. In this study, we aim to explore the material basis and mechanism of THSWD in the treatment of HER-2 positive breast cancer through literature review and network pharmacology studies. Through a literature review of the traditional application, chemical composition of Chinese herbal medicine of THSWD, as well as its clinical reports and pharmacological research on breast cancer treatment. Meanwhile, we conducted "component-pathway-target" network through network pharmacology reveals the main material basis, possible targets and pathways of THSWD in inhibiting HER-2 positive breast cancer. Literature review and network pharmacology research results had predicted that, baicalein, kaempferol, caffeic acid, amygdalin, quercetin, ferulic acid, gallic acid, catalpol, hydroxysafflor yellow A, paeoniflorin in THSWD are the main effective chemical composition. THSWD regulates 386 protein targets and 166 pathways related to breast cancer. The molecular mechanism is mainly to improve the microenvironment of tumor cells, regulate the process of tumor cell EMT, and inhibit tumor cell proliferation and metastasis. This study revealed the mechanism of action of THSWD in the treatment of HER-2 positive breast cancer through literature review and network pharmacology studies, providing a scientific basis for clinical application.
Collapse
Affiliation(s)
- Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Minmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Kequn Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Chuan Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Shengju Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China.
- Guizhou Yibai Pharmaceutical Co. Ltd, Guiyang, 550008, Guizhou, China.
| |
Collapse
|
5
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
6
|
Catharanthus roseus L. extract downregulates the expression profile of motility-related genes in highly invasive human breast cancer cell line MDA-MB-231. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00641-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower. Metabolites 2020; 10:metabo10060253. [PMID: 32560514 PMCID: PMC7344433 DOI: 10.3390/metabo10060253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Safflower (Carthamus tinctorius L.) has long been grown as a crop due to its commercial utility as oil, animal feed, and pharmacologically significant secondary metabolites. The integration of omics approaches, including genomics, transcriptomics, metabolomics, and proteomics datasets, has provided more comprehensive knowledge of the chemical composition of crop plants for multiple applications. Knowledge of a metabolome of plant is crucial to optimize the evolution of crop traits, improve crop yields and quality, and ensure nutritional and health factors that provide the opportunity to produce functional food or feedstuffs. Safflower contains numerous chemical components that possess many pharmacological activities including central nervous, cardiac, vascular, anticoagulant, reproductive, gastrointestinal, antioxidant, hypolipidemic, and metabolic activities, providing many other human health benefits. In addition to classical metabolite studies, this review focuses on several metabolite-based working techniques and updates to provide a summary of the current medical applications of safflower.
Collapse
|
8
|
Yan K, Wang X, Zhu H, Pan H, Wang L, Yang H, Liu M, Jin M, Zang B, Gong F. Safflower yellow improves insulin sensitivity in high-fat diet-induced obese mice by promoting peroxisome proliferator-activated receptor-γ2 expression in subcutaneous adipose tissue. J Diabetes Investig 2020; 11:1457-1469. [PMID: 32356607 PMCID: PMC7610129 DOI: 10.1111/jdi.13285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aims/Introduction Safflower yellow (SY) and its main component, hydroxysafflor yellow A, have been demonstrated to show anti‐obesity effects. Peroxisome proliferator‐activated receptor‐γ2 (PPARγ2) is a critical transcription factor in adipose tissue metabolism. The aim of the present study was to explore the effects of SY in high‐fat diet‐induced obese mice, and further investigate the mechanism involving PPARγ2. Methods High‐fat diet‐induced obese mice were given 120 mg/kg/day SY for 8 weeks. Glucose and insulin tolerance tests were carried out. Fat mass and serum levels of glucose and insulin were measured. The expression of insulin signaling pathway‐related genes and PPARγ2 in the adipose tissue was measured. In vitro, the effects of SY (0–500 mg/L) and hydroxysafflor yellow A (0–100 mg/L) on PPARγ2 promoter activities and PPARγ2 messenger ribonucleic acid (mRNA) levels in 3T3‐L1 preadipocytes or adipocytes were also detected. Results Safflower yellow reduced fat mass, decreased glucose levels and improved insulin sensitivity in obese mice. SY also increased the mRNA levels of insulin signaling pathway‐related genes, and increased PPARγ2 mRNA levels by 39.1% in subcutaneous adipose tissue (P < 0.05). In vitro, SY and hydroxysafflor yellow A significantly enhanced PPARγ2 promoter activities by 1.3–2.1‐fold, and increased PPARγ2 mRNA levels by 1.2–1.6‐fold in 3T3‐L1 preadipocytes or adipocytes (P < 0.05). Conclusions SY could reduce fat mass, decrease glucose levels and improve insulin sensitivity in high‐fat diet‐induced obese mice. The probable mechanism is to increase PPARγ2 expression by stimulating PPARγ2 promoter activities, further increasing the expression of insulin signaling pathway‐related genes in subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Jin
- Department of Pharmacology, China-Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Baoxia Zang
- Department of Pharmacology, China-Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Autophagy Suppression Accelerates Apoptosis Induced by Norcantharidin in Cholangiocarcinoma. Pathol Oncol Res 2019; 26:1697-1707. [DOI: 10.1007/s12253-019-00719-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/13/2019] [Indexed: 11/27/2022]
|
10
|
Ampelopsin E Reduces the Invasiveness of the Triple Negative Breast Cancer Cell Line, MDA-MB-231. Molecules 2019; 24:molecules24142619. [PMID: 31323836 PMCID: PMC6680398 DOI: 10.3390/molecules24142619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC.
Collapse
|
11
|
Safflower yellow promotes angiogenesis through p-VHL/ HIF-1α/VEGF signaling pathway in the process of osteogenic differentiation. Biomed Pharmacother 2018; 107:1736-1743. [PMID: 30257392 DOI: 10.1016/j.biopha.2018.06.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Safflower yellow (SY) is an active component ofCarthamus tinctorius L. that is widely used in orthopedics. This study aimed to evaluate the role of SY in angiogenesis and osteogenic differentiation. METHODS The migration and in vitro angiogenesis of SY (4.5, 9.0, 18 μg/ml)-treated human umbilical vein endothelial cells (HUVEC-12) were assessed by transwell and tube formation assay, respectively. Osteogenic differentiation ability was detected by alkaline phosphatase (ALP) and Alizarin Red S staining. The mRNA and protein expressions of related markers were determined by RT-qPCR and Western blot. RESULTS The migration and tube formation ability of HUVEC-12 were promoted by SY. Furthermore, SY facilitated the angiogenesis and osteogenic differentiation in the co-culture of HUVEC-12 and BMSCs by increasing hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), Angiopoietin-2 (Ang-2), ALP, runt-related transcription factor 2 (Runx2) and osteopontin-1 (OPN-1) levels. Inhibition of HIF-1α expression by 3-(5-hydroxymethl-2-furyl)-1-benzylindazole (YC-1), restrained SY-induced proliferation, migration and angiogenesis of HUVEC-12 and the increased protein levels of VEGF, Ang-2, ALP, Runx2 and OPN-1. Finally, WD repeat and SOCS box-containing protein-1 (WSB-1)/Von Hippel-Lindau protein (p-VHL) pathway was involved in the beneficial effect of SY. CONCLUSION SY promotes osteogenic differentiation via enhancing angiogenesis by regulating pVHL/HIF-1α/VEGF signaling pathway.
Collapse
|
12
|
Harun SNA, Israf DA, Tham CL, Lam KW, Cheema MS, Md Hashim NF. The Molecular Targets and Anti-Invasive Effects of 2,6-bis-(4-hydroxyl-3methoxybenzylidine) cyclohexanone or BHMC in MDA-MB-231 Human Breast Cancer Cells. Molecules 2018; 23:E865. [PMID: 29642589 PMCID: PMC6017078 DOI: 10.3390/molecules23040865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
In order to metastasize, tumor cells need to migrate and invade the surrounding tissues. It is important to identify compound(s) capable of disrupting the metastasis of invasive cancer cells, especially for hindering invadopodia formation, so as to provide anti-metastasis targeted therapy. Invadopodia are thought to be specialized actin-rich protrusions formed by highly invasive cancer cells to degrade the extracellular matrix (ECM). A curcuminoid analogue known as 2,6-bis-(4-hydroxy-3-methoxybenzylidine)cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses an anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still a lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we investigated the effect of BHMC on MDA-MB-231 breast cancer cells and its underlying mechanism of action to prevent breast cancer invasion, especially during the formation of invadopodia. All MDA-MB-231 cells, which were exposed to the non-cytotoxic concentrations of BHMC, expressed the proliferating cell nuclear antigen (PCNA), which indicate that the anti-proliferative effects of BHMC did not interfere in the subsequent experiments. By using a scratch migration assay, transwell migration and invasion assays, we determined that BHMC reduces the percentage of migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduced the number of cells with invadopodia. Analysis of the proteins involved in the invasion showed that there is a significant reduction in the expressions of Rho guanine nucleotide exchange factor 7 (β-PIX), matrix metalloproteinase-9 (MMP-9), and membrane type 1 matrix metalloproteinase (MT1-MMP) in the presence of BHMC treatment at 12.5 µM. Therefore, it can be postulated that BHMC at 12.5 µM is the optimal concentration for preventing breast cancer invasion.
Collapse
Affiliation(s)
- Siti Nor Aini Harun
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Kok Wai Lam
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
13
|
Zhao Y, Liu Y. A mechanistic overview of herbal medicine and botanical compounds to target transcriptional factors in Breast cancer. Pharmacol Res 2017; 130:292-302. [PMID: 29292214 DOI: 10.1016/j.phrs.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/23/2017] [Accepted: 12/23/2017] [Indexed: 12/28/2022]
Abstract
The abnormalities of transcription factors, such as NF-κB, STAT, estrogen receptor, play a critical role in the initiation and progression of breast cancer. Due to the limitation of current treatment, transcription factors could be promising therapeutic targets, which have received close attention. In this review, we introduced herbal medicines, as well as botanical compounds that had been verified with anti-tumor properties via regulating transcription factors. Herbs, compounds, as well as formulae reported with various transcriptional targets, were summarized thoroughly, to provide implication for the future research on basic experiment and clinical application.
Collapse
Affiliation(s)
- Yingke Zhao
- Cardiovascular Diseases Centre, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Yue Liu
- Cardiovascular Diseases Centre, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|