1
|
Li J, Zhao J, Wang X, Lin Z, Lin H, Lin Z. Ginsenoside - a promising natural active ingredient with steroidal hormone activity. Food Funct 2024; 15:1825-1839. [PMID: 38315542 DOI: 10.1039/d3fo05484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ginsenosides are a class of natural products with hormone-like activity of triterpenoid saponins and have a variety of pharmacological activities such as anti-aging, immune regulation and cognitive improvement. With the great research interest in alternative medicine and natural products, they are gradually becoming research hotspots. Ginsenosides have a four-ring rigid steroid backbone similar to steroid hormones, and a series of experimental studies have shown that they can exhibit hormone-like activity by binding to nuclear receptors or affecting hormone levels, thereby affecting a wide range of inflammatory conditions, cancers, and menopause-related diseases. This review summarizes the mechanisms and potential health effects of ginsenosides exhibiting estrogen-like, glucocorticoid-like and androgen-like activities, providing an important reference for the exploration of safe phytohormone replacement therapy.
Collapse
Affiliation(s)
- Jun Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xinhe Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhi Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Bhattacharya D, Bharati MR, Sakhare K, Khandelia P, Banerjee R, Narayan KP. Steroid hormone receptor based gene delivery systems as potential oral cancer therapeutics. Biomed Mater 2024; 19:025036. [PMID: 38290150 DOI: 10.1088/1748-605x/ad2407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Glucocorticoid and Mineralocorticoid receptors are principally ligand-dependent intracellular transcription factors that are known to influence the development and growth of many human cancers. Our study investigates the potential of these receptors to act as a target for oral cancer treatment since findings in this regard are sparse till date. Leveraging the aberrant behavior of steroid hormone receptors (SHRs) in cancer, we have targeted oral cancer cells in 2D-culture using liposomes containing both synthetic as well as crude, natural SHR ligands isolated from an aqueous Indian medicinal plant. Lipoplexes thus formulated demonstrated targeted transfectability as indicated by expression of green fluorescent protein. Transfection of oral squamous cell carcinoma cells with exogenous, anticancer gene p53 lipoplexed with crude saponin-based liposome induced apoptosis of cancer cells via regulation of BAX and B-cell leukemia/lymphoma-2 (BCL2) protein levels at levels comparable with pre-established delivery systems based on synthetic SHR ligands. Our findings strongly indicate a possibility of developing plant saponin-based inexpensive delivery systems which would target cancer cells selectively with reduced risks of off target delivery and its side effects.
Collapse
Affiliation(s)
- Dwaipayan Bhattacharya
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Madhu Rani Bharati
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Kalyani Sakhare
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Piyush Khandelia
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Rajkumar Banerjee
- Division of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Telangana 500076, India
| | - Kumar Pranav Narayan
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
3
|
You L, Shen T, Hu W, Cho JY. Protopanaxatriol activates EGFR and HER2 to strengthen the molecules of skin protection in human keratinocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155167. [PMID: 37952408 DOI: 10.1016/j.phymed.2023.155167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Protopanaxatriol (PPT) is an important ginsenoside produced by ginseng, a tonic plant used in many areas. PPT has beneficial effects against many disease states including inflammation, diabetes, and cancer. However, PPT's protective effects on skin integrity have been rarely studied. Previously, we reported that PPT can maintain skin moisture through activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways. However, the cellular targets for enhancing skin moisturizing effects via PPT are still unknown. PURPOSE We wanted to identify the upstream targets of PPT on upregulating moisturizing factor (HAS-2) expression. STUDY DESIGN We investigated which upstream proteins can be directly stimulated by PPT to modulate NF-κB, MAPKs and other signaling cascades. Then, the targeted proteins were overexpressed to check the relationship with HAS-2. Next, the cellular thermal shift assay (CETSA) was conducted to check the relationship between targeted proteins and PPT. METHODS A human keratinocyte HaCaT were employed to measure the levels of moisturizing factors and the signaling proteins activated by PPT. Transfection conditions were established with DNA constructs expressing epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) and their mutants prepared by site-directed mutagenesis. Further investigation on molecular mechanisms was conducted by RT-PCR, luciferase reporter gene assay, CETSA, or Western blot. RESULTS We found that PPT can activate the phosphorylation of EGFR and HER2. These stimulations caused Src phosphorylation, which resulted in the activation of phosphoinositide 3-kinases (PI3K)/pyruvate dehydrogenase kinase 1 (PDK1)/protein kinase B (AKT)/NF-κB and MAPKs signaling cascades. Additionally, EGFR and HER2 activation resulted in phosphorylation of signal transducer and activator of transcription 3 (STAT3) and calcium/calmodulin-dependent protein kinase II (CaMKII). This induced the AMP-activated protein kinase alpha (AMPKα) signaling pathway. Additionally, PPT blocked peroxisome proliferator activated receptor gamma (PPARγ), which also contributed to the phosphorylation of Src. CONCLUSION Overall, we first found that PPT offers excellent protection of the skin barrier and hydrogen supply in keratinocytes. Moreover, growth factor receptors such as EGFR and HER2 were revealed to be central enzymes to be directly targeted by PPT. These results suggest a potentially valuable role as a cosmetic ingredient.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ting Shen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Lee N, Lee JH, Won JE, Lee YJ, Hyun SH, Yi YD, In G, Han HD, Lee Y. KRG and its major ginsenosides do not show distinct steroidogenic activities examined by the OECD test guideline 440 and 456 assays. J Ginseng Res 2022; 47:385-389. [DOI: 10.1016/j.jgr.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 03/12/2023] Open
|
5
|
Soh S, Ong WY. Effect of Withanolide A on 7-Ketocholesterol Induced Cytotoxicity in hCMEC/D3 Brain Endothelial Cells. Cells 2022; 11:cells11030457. [PMID: 35159267 PMCID: PMC8834337 DOI: 10.3390/cells11030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Withanolide A is a naturally occurring phytochemical that is found in Ashwagandha (Withania somnifera, fam. Solanaceae) or Indian Ginseng. In the current study, we elucidated the effect of withanolide A on 7-ketocholesterol (7KC) induced injury in hCMEC/D3 human brain endothelial cells. 7KC is a cholesterol oxidation product or oxysterol that is present in atherosclerotic plaques and is elevated in the plasma of patients with hypercholesterolemia and/or diabetes mellitus. Results showed that withanolide A significantly reduced the effects of 7KC, which include loss of endothelial cell viability, increase in expression of pro-inflammatory genes-IL-1β, IL-6, IL-8, TNF-α, cyclooxygenase-2 (COX-2), increased COX-2 enzyme activity, increased ROS formation, increased expression of inducible nitric oxide synthase and genes associated with blood clotting, including Factor 2/thrombin, Factor 8, von Willebrand factor, and thromboxane A synthase, and increased human thrombin enzyme activity. Some of the above effects of withanolide A on 7KC were reduced in the presence of the glucocorticoid receptor antagonist, mifepristone (RU486). These findings suggest that the glucocorticoid receptor could play a role in the cytoprotective, antioxidant, and anti-clotting effects of withanolide A against 7KC. Further studies are necessary to elucidate the detailed mechanisms of action of withanolide A against oxysterol-induced injury.
Collapse
Affiliation(s)
- Sandra Soh
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore;
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore;
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
- Correspondence:
| |
Collapse
|
6
|
Lin H, Zhao J, Liu Z, Liu Z, Lin Z. Efficacy of Panax ginseng supplementation on androgen deficiency rats via metabolomics and gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Tian M, Li LN, Zheng RR, Yang L, Wang ZT. Advances on hormone-like activity of Panax ginseng and ginsenosides. Chin J Nat Med 2021; 18:526-535. [PMID: 32616193 DOI: 10.1016/s1875-5364(20)30063-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Traditional Chinese medicine (TCM) has been paid much attentions due to the prevention and treatment of steroid hormone disorders. Ginseng, the root of Panax ginseng C. A. Meyer (Araliaceae), is one of the most valuable herbs in complementary and alternative medicines around the world. A series of dammarane triterpenoid saponins, also known as phytosteroids, were reported as the primary ingredients of Ginseng, and indicated broad spectral pharmacological actions, including anti-cancer, anti-inflammation and anti-fatigue. The skeletons of the dammarane triterpenoid aglycone are structurally similar to the steroid hormones. Both in vitro and in vivo studies showed that Ginseng and its active ingredients have beneficial hormone-like role in hormonal disorders. This review thus summarizes the structural similarities between hormones and dammarane ginsenosides and integrates the analogous effect of Ginseng and ginsenosides on prevention and treatment of hormonal disorders published in recent twenty years (1998-2018). The review may provide convenience for anticipate structure-function relationship between saponins structure and hormone-like effect.
Collapse
Affiliation(s)
- Mei Tian
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lin-Nan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui-Rong Zheng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Hlengwa N, Muller CJF, Basson AK, Bowles S, Louw J, Awortwe C. Herbal supplements interactions with oral oestrogen-based contraceptive metabolism and transport. Phytother Res 2020; 34:1519-1529. [PMID: 32017271 DOI: 10.1002/ptr.6623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 11/06/2022]
Abstract
The increased use of herbal supplements as complementary or alternative medicines has become a clinical conundrum due to the potential for herb-drug interactions. This is exacerbated by an increased supply of new herbal supplements in the market claiming various health advantages. These herbal supplements are available as over-the-counter self-medications. Herbal supplements are generally perceived as efficacious without side effects commonly associated with conventional drugs. However, despite regulations, claims related to their therapeutic effects are mostly unsupported by scientific evidence. These products often lack suitable product quality controls, labelled inadequately and with batch to batch variations, potentially compromising the safety of the consumer. Amongst health practitioners, the greatest concern is related to the lack of chemical characterization of the active compounds of the herbal supplements. The interaction between these different active components and their concomitant effects on other conventional drugs is generally not known. This review will focus on herbal supplements with the potential to effect pharmacokinetic and pharmacodynamic properties of oestrogen-based oral contraceptives. The use of herbal supplements for weight management, depression, and immune boosting benefits were selected as likely herbal supplements to be used concomitantly by women on oral contraceptives.
Collapse
Affiliation(s)
- Nokulunga Hlengwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Sandra Bowles
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Johan Louw
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Charles Awortwe
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa.,Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
9
|
Xiao H, Xue Q, Zhang Q, Li C, Liu X, Liu J, Li H, Yang J. How Ginsenosides Trigger Apoptosis in Human Lung Adenocarcinoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1737-1754. [PMID: 31795742 DOI: 10.1142/s0192415x19500885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Panax ginseng is a natural medicine that has been used globally for a long time. Moreover, several studies have reported the effective activity of ginseng in treating malignancies. Various agents containing ginseng were widely used as an antitumor treatment nowadays. Lung cancer is the most common fatal cancer in China, and lung adenocarcinoma is the most common histological type of non-small cell lung cancer (NSCLC). What's worse, many patients may have a failed response to conventional therapy including chemotherapy, radiotherapy, or molecule-targeted therapy due to drug resistance. Apoptosis is a highly ordered cellular suicidal process that plays an essential role in maintaining normal homeostasis. The pharmacological mechanism of many antineoplastic drugs involves triggering of apoptotic process. In several recent studies, ginsenosides are regarded as major active components of ginseng that have the potential to control lung cancer. Most of these results have proved that ginsenosides induce apoptosis in lung cancer cells through many different signaling pathways such as PI3K/Akt, NF-κB, EGFR, and so on. This study is aimed at reviewing the signaling pathways that underlie ginsenosides-triggered apoptotic process and encourage further studies to target promising agents against lung cancer treatment.
Collapse
Affiliation(s)
- Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qianfei Xue
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunyan Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xiaoqiu Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jing Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
10
|
Ren S, Leng J, Xu XY, Jiang S, Wang YP, Yan XT, Liu Z, Chen C, Wang Z, Li W. Ginsenoside Rb1, A Major Saponin from Panax ginseng, Exerts Protective Effects Against Acetaminophen-Induced Hepatotoxicity in Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1815-1831. [PMID: 31786947 DOI: 10.1142/s0192415x19500927] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute liver injury (ALI) induced by acetaminophen (APAP) is the main cause of drug-induced liver injury. Previous reports indicated liver failure could be alleviated by saponins (ginsenosides) from Panax ginseng against APAP-induced inflammatory responses in vivo. However, validation towards ginsenoside Rb1 as a major and marker saponin may protect liver from APAP-induced ALI and its mechanisms are poorly elucidated. In this study, the protective effects and the latent mechanisms of Rb1 action against APAP-induced hepatotoxicity were investigated. Rb1 was administered orally with 10mg/kg and 20mg/kg daily for 1 week before a single injection of APAP (250mg/kg, i.p.) 1h after the last treatment of Rb1. Serum alanine/aspartate aminotransferases (ALT/AST), liver glutathione (GSH) depletion, as well as the inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were analyzed to indicate the underlying protective effects of Rb1 against APAP-induced hepatotoxicity with significant inflammatory responses. Histological examination further proved Rb1's protective effects. Importantly, Rb1 mitigated the changes in the phosphorylation of MAPK and PI3K/Akt, as well as its downstream factor NF-κB. In conclusion, experimental data clearly demonstrated that Rb1 exhibited a remarkable liver protective effect against APAP-induced ALI, partly through regulating MAPK and PI3K/Akt signaling pathways-mediated inflammatory responses.
Collapse
Affiliation(s)
- Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Jing Leng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xing-Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Xiao-Tong Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| |
Collapse
|
11
|
Yu L, Wei F, Liang J, Ren G, Liu X, Wang CZ, Yuan J, Zeng J, Luo Y, Bi Y, Yuan CS. Target Molecular-Based Neuroactivity Screening and Analysis of Panax ginseng by Affinity Ultrafiltration, UPLC-QTOF-MS and Molecular Docking. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1345-1363. [PMID: 31495181 DOI: 10.1142/s0192415x19500691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Panax ginseng exerts good neuroprotective activity at the cell and animal level, but the specific bioactive compounds and action mechanism are needed to be investigated, verified, and confirmed. In this work, affinity ultrafiltration (AUF), UPLC-QTOF-MS, and molecular docking were integrated into one strategy to screen, identify, and evaluate the bioactive compounds in ginseng at the molecular level. Three biological macromolecules (AChE, MAO-B, and NMDA receptor) were selected as the target protein for AUF-MS screening for the first time, and 16 potential neuroactive compounds were found with suitable binding degree. Then, the bioactivity of ginseng and its components were evaluated by AChE-inhibitory test and DPPH assay, and the data indicate that ginseng extract and the screened compounds have good neuroactivity. The interaction between the three targets and the screened compounds was further analyzed by molecular docking, and the results were consistent with a few discrepancies in comparison with the AUF results. Finally, according to the corresponding relation between component-target-pathway, the action mechanism of ginseng elucidated that ginseng exerts a therapeutic effect on AD through multiple relations of components, targets, and pathways, which is in good accordance with the TCM theory.
Collapse
Affiliation(s)
- Lide Yu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education and School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Feiting Wei
- Key Laboratory of Modern Preparation of TCM, Ministry of Education and School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Jian Liang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education and School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Gang Ren
- Key Laboratory of Modern Preparation of TCM, Ministry of Education and School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Xiaofei Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education and School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, The University of Chicago, Chicago, IL 60637, USA
| | - Jinbin Yuan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education and School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Jinxiang Zeng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education and School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Yun Luo
- Key Laboratory of Modern Preparation of TCM, Ministry of Education and School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, P. R. China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Zhang WS, Pan A, Yang L, Cai YY, Liu BL, Li P, Qi LW, Li J, Liu Q. American Ginseng and Asian Ginseng Intervention in Diet-Induced Obese Mice: Metabolomics Reveals Distinct Metabolic Profiles. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:787-801. [PMID: 31091973 DOI: 10.1142/s0192415x19500411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
American ginseng and Asian ginseng, which occupy prominent positions in the list of best-selling natural products in the West and East, are suitable for different indications in the traditional pharmacological uses. Currently, the effects of American ginseng and Asian ginseng in the protection against metabolic dysfunction and the differences between them are still unknown. Herein, an untargeted metabolomics based on liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) was determined. The serum metabolomics and dynamic feces metabolomics revealed significant metabolic distinction between American ginseng and Asian ginseng in diet-induced obese (DIO) mice. The results show that American ginseng and Asian ginseng alleviate glucose and lipid metabolism disorder in DIO mice. A total of 45 differential metabolites were confirmed between the drug-naïve and American ginseng group, and 32 metabolites were confirmed between the drug-naïve and Asian ginseng group. Metabolic pathways analysis shows that these two ginsengs treatment dynamic rectifies metabolic disorder in DIO mice mainly via regulating linoleic acids metabolism, cysteine and methionine metabolism and biosynthesis of unsaturated fatty acid. Moreover, American ginseng's specific function in monitoring the carnitines and taurine/hypotaurine metabolism might make it more effective in meliorating lipids metabolism disorder than Asian ginseng.
Collapse
Affiliation(s)
- Wen-Song Zhang
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - An Pan
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Liu Yang
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan-Yuan Cai
- † School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bao-Lin Liu
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.,‡ Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ping Li
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lian-Wen Qi
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.,‡ Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jing Li
- ‡ Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qun Liu
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
13
|
Wang CZ, Hou L, Wan JY, Yao H, Yuan J, Zeng J, Park CW, Kim SH, Seo DB, Shin KS, Zhang CF, Chen L, Zhang QH, Liu Z, Sava-Segal C, Yuan CS. Ginseng berry polysaccharides on inflammation-associated colon cancer: inhibiting T-cell differentiation, promoting apoptosis, and enhancing the effects of 5-fluorouracil. J Ginseng Res 2019; 44:282-290. [PMID: 32148410 PMCID: PMC7031751 DOI: 10.1016/j.jgr.2018.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/13/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Ginseng is a commonly used herbal medicine in treating various medical conditions. Chronic gut inflammation is a recognized factor for the development of colorectal cancer (CRC). In this project, Asian ginseng berry polysaccharide preparations were used to assess their effects on CRC and related immune regulation mechanisms. Methods Ginseng berry polysaccharide extract (GBPE) and purified ginseng berry polysaccharide portion (GBPP) were used to evaluate their activities on human HCT-116 and HT-29 CRC cell proliferation. Interleukin-8 secretion analysis was performed on HT-29 cells. Naive CD4 cell isolation and T-helper cell differentiation were performed and determined using flow cytometry for Th1 and Treg in addition to cell cycle and apoptotic investigation. Results GBPE and GBPP significantly inhibited interleukin-8 secretion and cancer cell proliferation, inhibited CD4+IFN-γ+ cell (Th1) differentiation, and decreased CD4+FoxP3+ cell (Treg) differentiation. Compared to the GBPE, GBPP showed more potent antiinflammatory activities on the malignant cells. This is consistent with the observation that GBPP can also inhibit Th1-cell differentiation better, suggesting that it has an important role in antiinflammation, whereas Treg cells hinder the body's immune response against malignancies. Supported by cell cycle and apoptosis data, GBPE and GBPP, at various degrees, remarkably enhanced the anticancer activities of 5-fluorouracil. Conclusion Data from this project suggested that Asian ginseng berry potentially has clinical utility in managing enteric inflammation and suppressing CRC through immunomodulation mechanisms.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Lifei Hou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Jin-Yi Wan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA.,Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Haiqiang Yao
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Jinbin Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Jinxiang Zeng
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Chan Woong Park
- Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea.,Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Su Hwan Kim
- Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea
| | - Dae Bang Seo
- Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Lina Chen
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Qi-Hui Zhang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Zhi Liu
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Clara Sava-Segal
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA.,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, USA
| |
Collapse
|
14
|
Potential Dissociative Glucocorticoid Receptor Activity for Protopanaxadiol and Protopanaxatriol. Int J Mol Sci 2018; 20:ijms20010094. [PMID: 30591629 PMCID: PMC6337468 DOI: 10.3390/ijms20010094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids are steroid hormones that regulate inflammation, growth, metabolism, and apoptosis via their cognate receptor, the glucocorticoid receptor (GR). GR, acting mainly as a transcription factor, activates or represses the expression of a large number of target genes, among them, many genes of anti-inflammatory and pro-inflammatory molecules, respectively. Transrepression activity of glucocorticoids also accounts for their anti-inflammatory activity, rendering them the most widely prescribed drug in medicine. However, chronic and high-dose use of glucocorticoids is accompanied with many undesirable side effects, attributed predominantly to GR transactivation activity. Thus, there is a high need for selective GR agonist, capable of dissociating transrepression from transactivation activity. Protopanaxadiol and protopanaxatriol are triterpenoids that share structural and functional similarities with glucocorticoids. The molecular mechanism of their actions is unclear. In this study applying induced-fit docking analysis, luciferase assay, immunofluorescence, and Western blot analysis, we showed that protopanaxadiol and more effectively protopanaxatriol are capable of binding to GR to activate its nuclear translocation, and to suppress the nuclear factor-kappa beta activity in GR-positive HeLa and HEK293 cells, but not in GR-low level COS-7 cells. Interestingly, no transactivation activity was observed, whereas suppression of the dexamethasone-induced transactivation of GR and induction of apoptosis in HeLa and HepG2 cells were observed. Thus, our results indicate that protopanaxadiol and protopanaxatriol could be considered as potent and selective GR agonist.
Collapse
|
15
|
Xu ZH, Gao YY, Zhang HT, Ruan KF, Feng Y. Progress in Experimental and Clinical Research of the Diabetic Retinopathy Treatment Using Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-27. [PMID: 30284463 DOI: 10.1142/s0192415x1850074x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Diabetic retinopathy (DR), one of the most common microvascular complications of diabetic mellitus, is currently the main cause of adult-acquired blindness. The pathogenesis of DR is complex and the current clinical application of various treatment methods cannot completely prevent the development of this disease. Many reports have been published regarding the treatment of DR with Traditional Chinese Medicine (TCM), which has received increasing attention from medical practitioners worldwide. Studies published between 1994 and April 2017 were collected from the CNKI, VIP, Medline and Web of Science databases, as well as from Chinese traditional books and Chinese Pharmacopoeia, subsequently obtaining more than 550 studies. Thereafter, the status quo of DR treatment using TCM had been summarized according to four aspects - compound formula therapy, Chinese herbal medicine extracts and monomer therapy, integrated traditional Chinese and Western medicine therapy, and Chinese medicine external treatment. According to the literature reviewed herein, TCM has had definite effects on the prevention and treatment of DR, especially when used in combination with modern medical methods. However, the lack of a unified standard on the syndrome differentiation of DR and the lack of support of evidence-based medicine theory in clinical practice have been consistent concerns in previous research studies and needs to be addressed in subsequent studies.
Collapse
Affiliation(s)
- Zhao-Hui Xu
- 1 Innovative Chinese Medicine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ying-Ying Gao
- 1 Innovative Chinese Medicine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Hua-Ting Zhang
- 1 Innovative Chinese Medicine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ke-Feng Ruan
- 1 Innovative Chinese Medicine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yi Feng
- 1 Innovative Chinese Medicine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
16
|
Yao H, Wan JY, Zeng J, Huang WH, Sava-Segal C, Li L, Niu X, Wang Q, Wang CZ, Yuan CS. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer. Oncol Lett 2018; 15:8339-8348. [PMID: 29805567 PMCID: PMC5950138 DOI: 10.3892/ol.2018.8414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/16/2018] [Indexed: 01/26/2023] Open
Abstract
Ginsenoside Rb1, a major component of different ginseng species, can be bioconverted into compound K by gut microbiota, and the latter possess much stronger cancer chemopreventive potential. However, while the initiation and progression of colorectal cancer is closely associated with gut inflammation, to date, the effects of compound K on inflammation-linked cancer chemoprevention have not been reported. In the present study, liquid chromatography quadrupole time-of-flight mass spectrometry analysis was applied to evaluate the biotransformation of Rb1 in American ginseng by human enteric microflora. The in vitro inhibitory effects of Rb1 and compound K were compared using the HCT-116 and HT-19 human colorectal cancer cell lines by a MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Using ELISA, the anti-inflammatory effects of Rb1 and compound K were compared for their inhibition of interleukin-8 secretion in HT-29 cells, induced by lipopolysaccharide. The results revealed that compound K is the major intestinal microbiome metabolite of Rb1. When compared with Rb1, compound K had significantly stronger anti-proliferative effects in HCT-116 and HT-29 cell lines (P<0.01). Compound K significantly arrested HCT-116 and HT-29 cells in the G1 phase, and induced cell apoptosis (P<0.01). By contrast, Rb1 did not markedly influence the cell cycle or apoptosis. Furthermore, compound K exerted significant anti-inflammatory effects even at low concentrations (P<0.05), while Rb1 did not have any distinct effects. The data obtained from the present study demonstrated that compound K, an intestinal microbiome metabolite of Rb1, may have a potential clinical value in the prevention of inflammatory-associated colorectal cancer.
Collapse
Affiliation(s)
- Haiqiang Yao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Jinxiang Zeng
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Wei-Hua Huang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Clara Sava-Segal
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Lingru Li
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xin Niu
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Qi Wang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Ying A, Yu QT, Guo L, Zhang WS, Liu JF, Li Y, Song H, Li P, Qi LW, Ge YZ, Liu EH, Liu Q. Structural-Activity Relationship of Ginsenosides from Steamed Ginseng in the Treatment of Erectile Dysfunction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:137-155. [PMID: 29298510 DOI: 10.1142/s0192415x18500088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ginseng has been reported to have diverse pharmacological effects. One of the therapeutic claims for ginseng is to enhance sexual function. Ginsenosides are considered as the major active constituents. A steaming process can alter the ginsenoside profile of ginseng products. The structure-function relationship of ginsenosides in the treatment of erectile dysfunction (ED) has not been investigated yet. In this work, 15 different processed ginsengs are produced by steaming, and 13 major ginsensosides are quantified by liquid chromatography with UV detection, including Rg1, Re, Rf, Rb1, Rc, Rb2, Rf, Rk3, Rh4, 20S-Rg3, 20R-Rg3, Rk1, and Rg5. Their anti-ED activities are screened using hydrocortisone-induced mice model (Kidney Yang Deficiency Syndrome in Chinese Medicine) and primary corpus cavernosum smooth muscle cells (CCSMCs). A processed ginseng with steaming treatment at 120[Formula: see text]C for 4[Formula: see text]h and five times possesses abundant ginsenosides Rk1, Rk3, Rh4 and Rg5 transformed via deglycosylation and dehydroxylation, and produces optimal activity against ED. The number of sugar molecules, structure of hydroxyl groups and stereoselectivity in ginsenosides affect their anti-ED activity. Among the 13 ginsenosides, Rk1, Rk3, Rh4 and Rg5 are the most efficient in decreasing intracellular calcium levels by inhibiting phosphodiesterase 5A (PDE5A) to reduce the degradation of cyclic guanosine monophosphate (cGMP) in CCSMCs. Rg5 also restrain hypoxia inducible factor-1[Formula: see text] (HIF-1[Formula: see text] expression in hypoxia state, and increase endothelial nitric oxide synthase (eNOS) expression in isolated rat cavernous tissue. These observations suggest a role for steamed ginseng containing two pairs of geometric isomers (i.e., Rk1/Rg5 and Rk3/Rh4) in the treatment of ED.
Collapse
Affiliation(s)
- Ang Ying
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qing-Tao Yu
- † Research & Development Centre, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510663, P. R. China
| | - Li Guo
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Wen-Song Zhang
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jin-Feng Liu
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yun Li
- † Research & Development Centre, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510663, P. R. China
| | - Hong Song
- ‡ College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Ping Li
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lian-Wen Qi
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ya-Zhong Ge
- † Research & Development Centre, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510663, P. R. China
| | - E-Hu Liu
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qun Liu
- * State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
18
|
|