1
|
Zhang N, Nao J, Dong X. Neuroprotective Mechanisms of Salidroside in Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17597-17614. [PMID: 37934032 DOI: 10.1021/acs.jafc.3c06672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that occurs in old age and pre-aging, characterized by progressive cognitive dysfunction and behavioral impairment. Salidroside (Sal) is a phenylpropanoid mainly isolated from Rhodiola species with various pharmacological effects. However, the exact anti-AD mechanism of Sal has not been clearly elucidated. This meta-analysis aims to investigate the possible mechanisms by which Sal exerts its anti-AD effects by evaluating behavioral indicators and biochemical characteristics. A total of 20 studies were included, and the results showed that the Sal treatment significantly improved behavior abnormalities in AD animal models. With regard to neurobiochemical indicators, Sal treatment could effectively increase the antioxidant enzyme superoxide dismutase, decrease the oxidative stress indicator malondialdehyde, and decrease the inflammatory indicators interleukin 1β, interleukin 6, and tumor necrosis factor α. Sal treatment was effective in reducing neuropathological indicators, such as amyloid-β levels and the number of apoptotic cells. When the relevant literature on the treatment of rodent AD models is combined with Sal, the therapeutic potential of Sal through multiple mechanisms was confirmed. However, further confirmation by higher quality studies, larger sample sizes, and more comprehensive outcome evaluations in clinical trials is needed in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Seventh Clinical College of China Medical University, 24 Central Street, Xinfu District, Fushun, Liaoning 113000, People's Republic of China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| |
Collapse
|
2
|
Ao L, Chen Z, Yin J, Leng Y, Luo Y, Fu X, Liu H, Liu X, Gao H, Xie C. Chinese herbal medicine and active ingredients for diabetic cardiomyopathy: molecular mechanisms regulating endoplasmic reticulum stress. Front Pharmacol 2023; 14:1290023. [PMID: 38027018 PMCID: PMC10661377 DOI: 10.3389/fphar.2023.1290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.
Collapse
Affiliation(s)
- Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Li L, Yao W. The Therapeutic Potential of Salidroside for Parkinson's Disease. PLANTA MEDICA 2023; 89:353-363. [PMID: 36130710 DOI: 10.1055/a-1948-3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD), a neurological disorder, is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Its incidence increases with age. Salidroside, a phenolic compound extracted from Sedum roseum, reportedly has multiple biological and pharmacological activities in the nervous system. However, its effects on PD remain unclear. In this review, we summarize the effects of salidroside on PD with regard to DA metabolism, neuronal protection, and glial activation. In addition, we summarize the susceptibility genes and their underlying mechanisms related to antioxidation, inflammation, and autophagy by regulating mitochondrial function, ubiquitin, and multiple signaling pathways involving NF-κB, mTOR, and PI3K/Akt. Although recent studies were based on animal and cellular experiments, this review provides evidence for further clinical utilization of salidroside for PD.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Hong H, Park TJ, Jang S, Kim MS, Park JS, Chi WJ, Kim SY. Anti-inflammatory activity of 6- O-phospho-7-hydroxycoumarin in LPS-induced RAW 264.7 cells. JOURNAL OF APPLIED BIOLOGICAL CHEMISTRY 2022; 65:33-41. [DOI: 10.3839/jabc.2022.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 01/03/2025]
Affiliation(s)
- Hyehyun Hong
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Asan 31460, Republic of Korea
| | - Tae-Jin Park
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Asan 31460, Republic of Korea
| | - Sungchan Jang
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Asan 31460, Republic of Korea
| | - Min-Seon Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Jin-Soo Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Won-Jae Chi
- Microorganism Resources Division, Biological Resources Research Department, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Asan 31460, Republic of Korea
| |
Collapse
|
5
|
Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T. Salidroside Ameliorates Alzheimer's Disease by Targeting NLRP3 Inflammasome-Mediated Pyroptosis. Front Aging Neurosci 2022; 13:809433. [PMID: 35126093 PMCID: PMC8814655 DOI: 10.3389/fnagi.2021.809433] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Amyloid β-protein (Aβ) is reported to activate NLRP3 inflammasomes and drive pyroptosis, which is subsequently involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). To date, the pathogenesis of AD is unfortunately insufficiently elucidated. Therefore, this study was conducted to explore whether Salidroside (Sal) treatment could benefit AD by improving pyroptosis. Firstly, two animal models of AD, induced, respectively, by Aβ1-42 and D-galactose (D-gal)/AlCl3, have been created to assist our appreciation of AD pathophysiology. We then confirmed that pyroptosis is related to the pathogenesis of AD, and Sal can slow the progression of AD by inhibiting pyroptosis. Subsequently, we established the D-gal and Nigericin-induced PC12 cells injury model in vitro to verify Sal blocks pyroptosis mainly by targeting the NLRP3 inflammasome. For in vivo studies, we observed that Aβ accumulation, Tau hyperphosphorylation, neurons of hippocampal damage, and cognitive dysfunction in AD mice, caused by bilateral injection of Aβ1-42 into the hippocampus and treatments with D-gal combine AlCl3. Besides, accumulated Aβ promotes NLRP3 inflammasome activation, which leads to the activation and release of a pro-inflammatory cytokine, interleukin-1 beta (IL-1β). Notably, both Aβ accumulation and hyperphosphorylation of Tau decreased and inhibited pyroptosis by downregulating the expression of IL-1β and IL-18, which can be attributed to the treatment of Sal. We further found that Sal can reverse the increased protein expression of TLR4, MyD88, NF-κB, P-NF-κB, NLRP3, ASC, cleaved Caspase-1, cleaved GSDMD, IL-1β, and IL-18 in vitro. The underlying mechanism may be through inhibiting TLR4/NF-κB/NLRP3/Caspase-1 signaling pathway. Our study highlights the importance of NLRP3 inflammasome-mediated pyroptosis in AD, and how the administration of pharmacological doses of Sal can inhibit NLRP3 inflammasome-mediated pyroptosis and ameliorate AD. Thus, we conclude that NLRP3 inflammasome-mediated pyroptosis plays a significant role in AD and Sal could be a therapeutic drug for AD.
Collapse
Affiliation(s)
- Yawen Cai
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuhui Chai
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Fu
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingdi Wang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Zhang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue Zhang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Lingpeng Zhu
| | - Mingxing Miao
- Center of National Pharmaceutical Experimental Teaching Demonstration, China Pharmaceutical University, Nanjing, China
- Mingxing Miao
| | - Tianhua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Tianhua Yan
| |
Collapse
|
6
|
Liu J, Ma W, Zang CH, Wang GD, Zhang SJ, Wu HJ, Zhu KW, Xiang XL, Li CY, Liu KP, Guo JH, Li LY. Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1694. [PMID: 34988203 PMCID: PMC8667139 DOI: 10.21037/atm-21-5752] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Background The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important mediator of neuroinflammatory responses that regulates inflammatory injury following cerebral ischemia and may be a potential target. Salidroside (Sal) has good anti-inflammatory effects; however, it remains unclear whether Sal can regulate NLRP3 inflammasome activation through the Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway after cerebral ischemia to alleviate inflammatory injury. Methods We established an oxygen-glucose deprivation and reoxygenation (OGD/R) model of BV2 cells and a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. Cell Counting Kit-8 (CCK-8), flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay were used to detect the viability and apoptosis of BV2 cells. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of inflammatory factors. 2,3,5-triphenyltetrazolium chloride (TTC) staining and modified Neurological Severity Score (mNSS) were used to detect cerebral infarction volume and neurological deficit in rats. Western blot, immunohistochemistry and immunofluorescence staining were used to detect the protein expression levels. Results Our results showed that Sal increased viability, inhibited lactate dehydrogenase (LDH) release, and reduced apoptosis in OGD/R-induced BV2 cells. Sal reduced the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-8. Following induction by OGD/R, BV2 cells exhibited NLRP3 inflammasome activation and increased protein levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, IL-1β, and IL-18. Protein levels of key TLR4 signaling pathway elements, such as TLR4, myeloid differentiation primary response 88 (MyD88), and phosphorylated nuclear factor kappa B p65 (p-NF-κB p65)/NF-κB p65 were upregulated. Interestingly, it was revealed that Sal could reverse these changes. In addition, TAK242, a specific inhibitor of TLR4, had the same effect as Sal treatment on BV2 cells following induction by OGD/R. In the MCAO/R rat model, Sal was also observed to inhibit NLRP3 inflammasome activation in microglia, reduce cerebral infarction volume, and inhibit apoptosis. Conclusions In summary, we found that Sal inhibited NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway, thus playing a protective role. Therefore, Sal may be a promising drug for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Guo-Dong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Si-Jia Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Hong-Jie Wu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ke-Wei Zhu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Xiang-Lin Xiang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Lu X, Lu F, Yu J, Xue X, Jiang H, Jiang L, Yang Y. Gramine promotes functional recovery after spinal cord injury via ameliorating microglia activation. J Cell Mol Med 2021; 25:7980-7992. [PMID: 34382745 PMCID: PMC8358888 DOI: 10.1111/jcmm.16728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
In recent years, a large number of studies have reported that neuroinflammation aggravates the occurrence of secondary injury after spinal cord injury. Gramine (GM), a natural indole alkaloid, possesses various pharmacological properties; however, the anti-inflammation property remains unclear. In our study, Gramine was investigated in vitro and in vivo to explore the neuroprotection effects. In vitro experiment, our results suggest that Gramine treatment can inhibit release of pro-inflammatory mediators. Moreover, Gramine prevented apoptosis of PC12 cells which was caused by activated HAPI microglia, and the inflammatory secretion ability of microglia was inhibited by Gramine through NF-κB pathway. The in vivo experiment is that 80 mg/kg Gramine was injected orthotopically to rats after spinal cord injury (SCI). Behavioural and histological analyses demonstrated that Gramine treatment may alleviate microglia activation and then boost recovery of motor function after SCI. Overall, our research has demonstrated that Gramine exerts suppressed microglia activation and promotes motor functional recovery after SCI through NF-κB pathway, which may put forward the prospect of clinical treatment of inflammation-related central nervous diseases.
Collapse
Affiliation(s)
- Xiaolang Lu
- Department of OrthopedicsThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of OrthopedicsWenzhouChina
| | - Fengfeng Lu
- Department of OrthopedicsThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of OrthopedicsWenzhouChina
| | - Jiachen Yu
- Department of OrthopedicsThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of OrthopedicsWenzhouChina
| | - Xinghe Xue
- Department of OrthopedicsThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of OrthopedicsWenzhouChina
| | - Hongyi Jiang
- Department of OrthopedicsThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of OrthopedicsWenzhouChina
| | - Liting Jiang
- Department of OrthopedicsThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of OrthopedicsWenzhouChina
| | - Yang Yang
- Department of OrthopedicsThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of OrthopedicsWenzhouChina
| |
Collapse
|
8
|
Fan Y, Bi Y, Chen H. Salidroside Improves Chronic Stress Induced Depressive Symptoms Through Microglial Activation Suppression. Front Pharmacol 2021; 12:635762. [PMID: 34168556 PMCID: PMC8217647 DOI: 10.3389/fphar.2021.635762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Depression is a severe neurological disorder highly associated with chronic mental stress stimulation, which involves chronic inflammation and microglial activation in the central nervous system (CNS). Salidroside (SLDS) has been reported to exhibit anti-neuroinflammatory and protective properties on neurological diseases. However, the mechanism underlying the effect of SLDS on depressive symptoms has not been well elaborated. In the present study, the effects of SLDS on depressive behaviors and microglia activation in mice CNS were investigated. Behavioral tests, including Forced swimming test (FST), Open field test (OFT) and Morris water maze (MWM) revealed that SLDS treatment attenuated the depressive behaviors in stress mice. SLDS treatment significantly reduced the microglial immunoreactivity for both Iba-1 and CD68, characteristic of deleterious M1 phenotype in hippocampus of stress mice. Additionally, SLDS inhibited microglial activation involving the suppression of ERK1/2, P38 MAPK and p65 NF-κB activation and thus reduced the expression and release of neuroinflammatory cytokines in stress mice as well as in lipopolysaccharide (LPS)-induced primary microglia. Also, SLDS changed microglial morphology, attachment and reduced the phagocytic ability in LPS-induced primary microglia. The results demonstrated that SLDS treatment could improve the depressive symptoms caused by unpredictable chronic stress, indicating a potential therapeutic application of SLDS in depression treatment by interfering microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Haixia Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
10
|
Chen Q, Zhu L, Yip KM, Tang Y, Liu Y, Jiang T, Zhang J, Zhao Z, Yi T, Chen H. A hybrid platform featuring nanomagnetic ligand fishing for discovering COX-2 selective inhibitors from aerial part of Saussurea laniceps Hand.-Mazz. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113849. [PMID: 33485983 DOI: 10.1016/j.jep.2021.113849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/27/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saussurea laniceps Hand.-Mazz. (Compositae) is a representative "snow lotus" herb well known in Chinese folk medicine to treat inflammation-related diseases such as arthritis. S. laniceps (SL) shows anti-inflammatory and analgesic potencies and contains various constituents potentially with cyclooxygenase-2 (COX-2) selective inhibition. The herb is a valuable source of natural alternatives to synthetic COX-2 selective nonsteroidal anti-inflammatory drugs, a common medication for rheumatoid arthritis (RA) and osteoarthritis (OA) reported with serious cardiovascular side effects. AIM OF THE STUDY Based on an innovative drug screening platform, this study aimed to discover safe, effective COX-2 selective inhibitors from SL. MATERIALS AND METHODS An enzyme-anchored nanomagnetic fishing assay was developed to separate COX-2 ligands from SL. Cell and animal models of cardiomyocytes, lipopolysaccharide-stimulated macrophages, rat adjuvant-induced arthritis, and anterior cruciate ligament transection-induced OA rats, were adopted to screen the single/combined ligands regarding toxicity and bioactivity levels. Molecular docking was employed to unravel binding mechanisms of the ligands towards COX-1 and COX-2. RESULTS Four COX-2 selective compounds were separated from SL using optimized COX-2-functionalized magnetic nanoparticles. All the four ligands were proved with evidently lower cardiotoxicity both in vitro and in vivo than celecoxib, a known COX-2 selective inhibitor. Two ligands, scopoletin and syringin, exhibited potent anti-arthritic activities in rat models of RA and OA by alleviating clinical statuses, immune responses, and joint pathological features; their optimum combination ratio was discovered with stronger remedial effects on rat OA than single administrations. The COX-1/2 binding modes of the two phytochemicals contributed to explain their cardiac safety and therapeutic performances. CONCLUSIONS The screened chemicals are promising to be developed as COX-2 selective inhibitors as part of treating RA and OA. The hybrid strategy for discovering therapeutic agents from SL is shown here to be efficient; it should be equally valuable for finding other active chemicals in other natural sources.
Collapse
Affiliation(s)
- Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China
| | - Ka Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China
| | - Yancheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China; HKBU Institute of Research and Continuing Education (IRACE), Shenzhen, 518000, PR China
| | - Yi Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China; HKBU Institute of Research and Continuing Education (IRACE), Shenzhen, 518000, PR China
| | - Tao Jiang
- School of Chemistry, Resources and Environment, Leshan Normal University, Leshan, 614004, PR China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China; HKBU Institute of Research and Continuing Education (IRACE), Shenzhen, 518000, PR China.
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, 999077, PR China.
| |
Collapse
|
11
|
Wang Z, He C, Shi JS. Natural Products for the Treatment of Neurodegenerative Diseases. Curr Med Chem 2020; 27:5790-5828. [PMID: 31131744 DOI: 10.2174/0929867326666190527120614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Chunyang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China
| |
Collapse
|
12
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Chen D, Lu D, Liu H, Xue E, Zhang Y, Shang P, Pan X. Pharmacological blockade of PCAF ameliorates osteoarthritis development via dual inhibition of TNF-α-driven inflammation and ER stress. EBioMedicine 2019; 50:395-407. [PMID: 31735552 PMCID: PMC6921217 DOI: 10.1016/j.ebiom.2019.10.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
Background Epigenetic mechanisms have been reported to play key roles in osteoarthritis (OA) development. P300/CBP-associated factor (PCAF) is a member of the histone acetyltransferases, which exhibits a strong relationship with endoplasmic reticulum (ER) stress and transcription factor nuclear factor kappa B (NF-κB) signals. Salidroside, a natural histone acetylation inhibitor, showed its anti-inflammatory and anti-apoptotic effects in lipopolysaccharide (LPS)-stimulated microglia cells in our previous study. However, whether Sal has a protective effect against OA remains unknown, and its relationships to PCAF, NF-κB, and the ER stress pathway should be explored further. Methods We identified the role of PCAF in the pathogenesis of OA and determined the chondroprotective effect of Sal on both tumor necrosis factor alpha (TNF-α)-treated human chondrocytes and a destabilized medial meniscus (DMM) mouse OA model. Findings We found increased PCAF expression in human OA cartilage and TNF-α-driven chondrocytes. Meanwhile, silencing of PCAF attenuated nuclear p65 and C/EBP homologous protein levels in chondrocytes upon TNF-α stimulation. Furthermore, Sal was found to specifically bind to the inhibitory site of the PCAF protein structure, which subsequently reversed the TNF-α-induced activation of NF-κB signal and ER stress-related apoptosis in chondrocytes. In addition, the protective effect of Sal and its inhibitory effects on PCAF as well as inflammatory- and ER stress-related markers were also observed in the mouse DMM model. Interpretation Pharmacological blockade of PCAF by Sal ameliorates OA development via inhibition of inflammation and ER stress, which makes Sal a promising therapeutic agents for the treatment of OA.
Collapse
Affiliation(s)
- Deheng Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China
| | - Di Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China
| | - Haixiao Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China
| | - Enxing Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China
| | - Yu Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China.
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, 109, Xueyuanxi road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
14
|
Geng C, Guo Y, Qiao Y, Zhang J, Chen D, Han W, Yang M, Jiang P. UPLC-Q-TOF-MS profiling of the hippocampus reveals metabolite biomarkers for the impact of Dl-3-n-butylphthalide on the lipopolysaccharide-induced rat model of depression. Neuropsychiatr Dis Treat 2019; 15:1939-1950. [PMID: 31371967 PMCID: PMC6628600 DOI: 10.2147/ndt.s203870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE An increasing body of evidence reveals that inflammation is involved in the pathological mechanisms of depression. Our previous basic research confirmed that Dl-3-n-butylphthalide (NBP) possess anti-inflammatory properties. However, studies investigating metabolite biomarkers for the involvement of NBP in hippocampus tissue in the lipopolysaccharide (LPS)-induced rat model of depression are currently limited. Thus, the aim of this study was to identify metabolite biomarkers in the hippocampus for the impact of NBP in this model of depression. MATERIAL AND METHODS Male Sprague-Dawley rats were randomly allocated to one of the following three groups (n=6): Control, LPS-induced rat model of depression (LPS), and NBP involvement in the LPS-induced rat model of depression (LPS+NBP). Ultra-high-performance liquid chromatography-mass spectroscopy was used to determine the hippocampal metabolites. Multivariate statistical analysis was performed to identify differentially expressed hippocampal metabolites in the three groups. RESULTS Most of the identified differentially expressed metabolites were related to amino acid, lipid, energy, and oxidative stress metabolism. Additionally, metabolites were eventually connected to different pathways and metabolic networks, which may partly account for the pathophysiological process of depression. CONCLUSION The present findings provide insight into the anti-inflammatory effects of NBP, and further elucidate the pathophysiological mechanisms underlying inflammation-induced depression.
Collapse
Affiliation(s)
- Chunmei Geng
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Yujin Guo
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Yi Qiao
- Department of Public Health, Jining Medical University, Jining, People's Republic of China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dan Chen
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Wenxiu Han
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Mengqi Yang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
15
|
Zhang W, Huai Y, Miao Z, Chen C, Shahen M, Rahman SU, Alagawany M, El-Hack MEA, Zhao H, Qian A. Systems pharmacology approach to investigate the molecular mechanisms of herb Rhodiola rosea L. radix. Drug Dev Ind Pharm 2018; 45:456-464. [PMID: 30449200 DOI: 10.1080/03639045.2018.1546316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rhodiola rosea L. radix (RRL) is one of the most popular medical herb which has been widely used for the treatment of different diseases effectively, including cardiovascular diseases and nerve system diseases. However, due to the multiple compounds in RRL, the underlying molecular mechanisms of RRL are remained unclear. To decipher the action mechanisms of RRL from a systematic perspective, a systems pharmacology approach integrated absorption, distribution, metabolism, and excretion (ADME) system, drug targeting, and network analysis was introduced. First, by the ADME screening system and the target fishing process, 56 potential active compounds and 62 targets were obtained, respectively. In addition, compound-target network demonstrated that most compounds interacted with multiple targets, indicating that RRL may enhance its therapeutic effects probably through hitting on multiple targets in a holistic level. Moreover, target-pathway network and gene ontology analysis showed that multiple targets of RRL were involved in several biological pathways, i.e. Neuroactive ligand-receptor interaction, calcium signaling pathway, adrenergic signaling in cardiomyocytes, and VEGF signaling pathway, which dissecting the therapeutic effects of RRL on various diseases, such as cardiovascular diseases, depression, adaptation diseases, etc. In summary, this work successfully explains the potential active compounds and the multi-scale curative action mechanisms of RRL for treating various diseases; meanwhile, it implies that RRL could be applied as a novel therapeutic agent in arthritic diseases. Most importantly, this work provides an in silico strategy to understand the action mechanisms of herbal medicines from molecular/system levels, which will promote the new drug development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Wenjuan Zhang
- a Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| | - Ying Huai
- a Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| | - Zhiping Miao
- a Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| | - Chu Chen
- b Clinical Laboratory of Honghui Hospital , Xi'an JiaoTong University College of Medicine , Xi'an , Shaanxi , People's Republic of China
| | - Mohamed Shahen
- c Zoology Department, Faculty of Science , Tanta University , Tanta , Egypt
| | - Siddiq Ur Rahman
- d College of Life Sciences , Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Mahmoud Alagawany
- e Department of Poultry, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Mohamed E Abd El-Hack
- e Department of Poultry, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Heping Zhao
- b Clinical Laboratory of Honghui Hospital , Xi'an JiaoTong University College of Medicine , Xi'an , Shaanxi , People's Republic of China
| | - Airong Qian
- a Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences , Northwestern Polytechnical University , Xi'an , People's Republic of China
| |
Collapse
|
16
|
Zhang Z, Wang C, Lin J, Jin H, Wang K, Yan Y, Wang J, Wu C, Nisar M, Tian N, Wang X, Zhang X. Therapeutic Potential of Naringin for Intervertebral Disc Degeneration: Involvement of Autophagy Against Oxidative Stress-Induced Apoptosis in Nucleus Pulposus Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-20. [PMID: 30284462 DOI: 10.1142/s0192415x18500805] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain, but few efficacious medicines have been developed for IDD. Increased nucleus pulposus cells apoptosis is a dominant pathogenesis of IDD and is considered a therapeutic target. Previously, our group proved that autophagy may protect nucleus pulposus cells against apoptosis. As one of the major bioflavonoids of citrus, naringin activates autophagy. Therefore, we hypothesize that naringin may have therapeutic potential for IDD by activating autophagy in nucleus pulposus cells. In this study, we evaluated the effects of naringin on TBHP-induced oxidative stress in nucleus pulposus cells in vitro as well as in puncture-induced rat IDD model in vivo. Our results showed that naringin could reduce the incidence of oxidative stress-induced apoptosis in nucleus pulposus cells and promoted the expression of autophagy markers LC3-II/I and beclin-1. Meanwhile, inhibition of autophagy by 3-MA may partially reverse the anti-apoptotic effect of naringin, indicating that autophagy was involved in the protective effect of naringin in nucleus pulposus cells. Further study showed that autophagy regulation of naringin may be related to AMPK signaling. Also, we found that naringin treatment can regulate the expression of collagen II, aggrecan and Mmp13 to sustain the extracellular matrix. Furthermore, our in vivo study showed that naringin can ameliorate IDD in puncture-induced rat model. In conclusion, our study suggests that naringin can protect nucleus pulposus cells against apoptosis and ameliorate IDD in vivo, the mechanism may relate to its autophagy regulation.
Collapse
Affiliation(s)
- Zengjie Zhang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Chenggui Wang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Jialiang Lin
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Haiming Jin
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Ke Wang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Yingzhao Yan
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Jianle Wang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Congcong Wu
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Majid Nisar
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Naifeng Tian
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Xiangyang Wang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
| | - Xiaolei Zhang
- * Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's, Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang Province, P. R. China
- † Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, P. R. China
- ‡ The Second School of Medicine, Wenzhou Medical University, Wenzhou, P. R. China
- § Chinese Orthopaedic Regenerative Medicine Society, Wenzhou, P. R. China
| |
Collapse
|
17
|
Dhivya Bharathi M, Justin-Thenmozhi A, Manivasagam T, Ahmad Rather M, Saravana Babu C, Mohamed Essa M, Guillemin GJ. Amelioration of Aluminum Maltolate-Induced Inflammation and Endoplasmic Reticulum Stress-Mediated Apoptosis by Tannoid Principles of Emblica officinalis in Neuronal Cellular Model. Neurotox Res 2018; 35:318-330. [PMID: 30242626 DOI: 10.1007/s12640-018-9956-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023]
Abstract
The neuroprotective role of tannoid principles of Emblica officinalis (EoT), an Indian and Chinese traditional medicinal plant against memory loss in aluminum chloride-induced in vivo model of Alzheimer's disease through attenuating AChE activity, oxidative stress, amyloid and tau toxicity, and apoptosis, was recently reported in our lab. However, to further elucidate the mechanism of neuroprotective effect of EoT, the current study was designed to evaluate endoplasmic reticulum stress-suppressing and anti-inflammatory role of EoT in PC 12 and SH-SY 5Y cells. These cells were divided into four groups: control (aluminum maltolate (Al(mal)3), EoT + Al(mal)3, and EoT alone based on 3-(4, 5-dimethyl 2-yl)-2, and 5-diphenyltetrazolium bromide (MTT) assay. EoT significantly reduced Al(mal)3-induced cell death and attenuated ROS, mitochondrial membrane dysfunction, and apoptosis (protein expressions of Bax; Bcl-2; cleaved caspases 3, 6, 9, 12; and cytochrome c) by regulating endoplasmic reticulum stress (PKR-like ER kinase (PERK), α subunit of eukaryotic initiation factor 2 (EIF2-α), C/EBP-homologous protein (CHOP), and high-mobility group box 1 protein (HMGB1)). Moreover, inflammatory response (NF-κB, IL-1β, IL-6, and TNF-α) and Aβ toxicity (Aβ1-42) triggered by Al(mal)3 was significantly normalized by EoT. Our results suggested that EoT could be a possible/promising and novel therapeutic lead against Al-induced neurotoxicity. However, further extensive research is needed to prove its efficacy in clinical studies.
Collapse
Affiliation(s)
- Mathiyazahan Dhivya Bharathi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Arokiasamy Justin-Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India.
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Chidambaram Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS University, SS Nagar, Mysore, Karnataka, 570015, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.,Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Food and Brain Research Foundation, Chennai, Tamil Nadu, 600094, India
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|