1
|
Moralev A, Zenkova MA, Markov AV. Complex Inhibitory Activity of Pentacyclic Triterpenoids against Cutaneous Melanoma In Vitro and In Vivo: A Literature Review and Reconstruction of Their Melanoma-Related Protein Interactome. ACS Pharmacol Transl Sci 2024; 7:3358-3384. [PMID: 39539268 PMCID: PMC11555519 DOI: 10.1021/acsptsci.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Pentacyclic triterpenoids (PTs) are a class of plant metabolites with a wide range of pharmacological activities, including strong antitumor potential against skin malignancies. By acting on multiple signaling pathways that control key cellular processes, PTs are able to exert complex effects on melanoma progression in vitro and in vivo. In this review, we have analyzed the works published in the past decade and devoted to the effects of PTs, both natural and semisynthetic, on cutaneous melanoma pathogenesis, including not only their direct action on melanoma cells but also their influence on the tumor microenvironment and abberant melanogenesis, often associated with melanoma aggressiveness. Special attention will be paid to the molecular basis of the pronounced antimelanoma potency of PTs, including a detailed consideration of the pathways sensitive to PTs in melanoma cells, as well as the reconstruction of the melanoma-related protein interactome of PTs using a network pharmacology approach based on previously published experimentally verified protein targets of PTs. The information collected on the primary targets of PTs was compiled in the Protein Interactome of PTs (PIPTs) database, freely available at http://www.pipts-db.ru/, which can be used to further optimize the mechanistic studies of PTs in the context of melanoma and other malignancies. By summarizing recent research findings, this review provides valuable information to scientists working in the fields related to the evaluation of melanoma pathogenesis and development of PTs-based drug candidates.
Collapse
Affiliation(s)
- Arseny
D. Moralev
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| |
Collapse
|
2
|
Wang H, Zhou L, Zheng Q, Song Y, Huang W, Yang L, Xiong Y, Cai Z, Chen Y, Yuan J. Kai-xin-san improves cognitive impairment in D-gal and Aβ 25-35 induced ad rats by regulating gut microbiota and reducing neuronal damage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118161. [PMID: 38599474 DOI: 10.1016/j.jep.2024.118161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai-Xin-San (KXS) is a classic herbal formula for the treatment and prevention of AD (Alzheimer's disease) with definite curative effect, but its mechanism, which involves multiple components, pathways, and targets, is not yet fully understood. AIM OF THE STUDY To verify the effect of KXS on gut microbiota and explore its anti-AD mechanism related with gut microbiota. MATERIALS AND METHODS AD rat model was established and evaluated by intraperitoneal injection of D-gal and bilateral hippocampal CA1 injections of Aβ25-35. The pharmacodynamics of KXS in vivo includes general behavior, Morris water maze test, ELISA, Nissl & HE staining and immunofluorescence. Systematic analysis of gut microbiota was conducted using 16S rRNA gene sequencing technology. The potential role of gut microbiota in the anti-AD effect of KXS was validated with fecal microbiota transplantation (FMT) experiments. RESULTS KXS could significantly improve cognitive impairment, reduce neuronal damage and attenuate neuroinflammation and colonic inflammation in vivo in AD model rats. Nine differential intestinal bacteria associated with AD were screened, in which four bacteria (Lactobacillus murinus, Ligilactobacillus, Alloprevotella, Prevotellaceae_NK3B31_group) were very significant. CONCLUSION KXS can maintain the ecological balance of intestinal microbiota and exert its anti-AD effect by regulating the composition and proportion of gut microbiota in AD rats through the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Huijuan Wang
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Lifen Zhou
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qin Zheng
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yonggui Song
- Laboratory Animal Science and Technology Development Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
| | - Lin Yang
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yongchang Xiong
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhinan Cai
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ying Chen
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jinbin Yuan
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
3
|
Tian Y, Wang S, Tong W, Wang H, Zhang Y, Teng B. Pseudoginsenoside GQ mitigates chronic intermittent hypoxia-induced cognitive damage by modulating microglia polarization. Int Immunopharmacol 2024; 126:111234. [PMID: 37977071 DOI: 10.1016/j.intimp.2023.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Obstructive sleep apnea (OSA), a state of sleep disruption, is characterized by recurrent apnea, chronic intermittent hypoxia (CIH) and hypercapnia. Previous studies have showed that CIH-induced neuroinflammatory plays a crucial role in cognitive deficits. Pseudoginsenoside GQ (PGQ) is a new oxytetracycline-type saponin formed by the oxidation and cyclization of the 20(S) Rg3 side chain. Rg3 has been found to afford anti-inflammatory effects, while whether PGQ plays a role of anti-neuroinflammatory remains unclear. The purpose of this study was to investigate whether PGQ attenuates CIH-induced neuroinflammatory and cognitive impairment and the possible mechanism it involves. We found that PGQ significantly ameliorated CIH-induced spatial learning deficits, and inhibited microglial activation, pro-inflammatory cytokine release, and neuronal apoptosis in the hippocampus of CIH mice. In addition, PGQ pretreatment promoted microglial M1 to M2 phenotypic transition in IH-induced BV-2 microglial, as well as indirectly inhibited IH-induced neuronal injury via modulation of microglia polarization. Furthermore, we noted that activation of HMGB1/TLR4/NF-κB signaling pathway induced by IH was inhibited by PGQ. Molecular docking results revealed that PGQ could bind to the active sites of HMGB1 and TLR4. Taken together, this work supports that PGQ inhibits M1 microglial polarization via the HMGB1/TLR4/NF-κB signaling pathway, and indirectly exerts neuroprotective effects, suggesting that PGQ may be a potential therapeutic strategy for cognitive impairment accompanied OSA.
Collapse
Affiliation(s)
- Yanhua Tian
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Sanchun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weifang Tong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yating Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Teng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Liu Q, Li L, Zheng D, Jin S, Guan X, Fu Z, Xiong Z, Ding H. Mechanism of ShuiJingDan in Treating Acute Gouty Arthritis Flares Based on Network Pharmacology and Molecular Docking. Drug Des Devel Ther 2023; 17:3493-3505. [PMID: 38034481 PMCID: PMC10683514 DOI: 10.2147/dddt.s436360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Purpose This study examined the underlying mechanisms of SJD's anti-inflammatory and analgesic effects on acute GA flares. Methods This study used pharmacology network and molecular docking methods. The active ingredients of ShuiJingDan (SJD) were obtained from the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP), and the relevant targets of GA were obtained from the Online Mendelian Inheritance in Man (OMIM) database and Therapeutic Target Database (TTD). The core drug group-target-disease Venn diagram was formed by crossing the active ingredients of SJD and the relevant targets. Gene Ontology (GO) analysis was conducted for functional annotation, DAVID was used for Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis, and R was used to find the core targets. The accuracy of SJD network pharmacology analysis in GA treatment was verified by molecular docking simulations. Finally, a rat GA model was used to further verify the anti-inflammatory mechanism of SJD in the treatment of GA. Results SJD mainly acted on target genes including IL1B, PTGS2, CXCL8, EGF, and JUN, as well as signal pathways including NF-κB, Toll-like receptor (TLR), IL-17, and MAPK. The rat experiments showed that SJD could significantly relieve ankle swelling, reduce the local skin temperature, and increased the paw withdrawal threshold. SJD could also reduce synovial inflammation, reduced the concentrations of interleukin-1β (IL-1β), IL-8, and COX-2 in the synovial fluid, and suppressed the expression of IL1B, CXCL8, and PTGS2 mRNA in the synovial tissue. Conclusion SJD has a good anti-inflammatory effect to treat GA attacks, by acting on target genes such as IL-1β, PTGS2, and CXCL8.
Collapse
Affiliation(s)
- Qingsong Liu
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Lunyu Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Dan Zheng
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Songlin Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Xiaotian Guan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Zeting Fu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| | - Zhigang Xiong
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Haili Ding
- Insititute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
A Comparative Study of Serum Pharmacochemistry of Kai-Xin-San in Normal and AD Rats Using UPLC-LTQ-Orbitrap-MS. Pharmaceuticals (Basel) 2022; 16:ph16010030. [PMID: 36678527 PMCID: PMC9866203 DOI: 10.3390/ph16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Kai-Xin-San (KXS) is a classic formula for the treatment of Alzheimer's disease (AD). KXS has been widely used to treat emotional diseases; however, its active components remain unknown. There have been some reports about the efficacy and metabolic analysis of KXS, which are mainly based on studying normal animals. The current work first established an AD rat model by injecting D-galactose into the abdominal cavity and injecting Aβ25-35 into the hippocampus on both sides, followed by intragastric administration of KXS for a consecutive week; then, the analytical method for ethanol extraction from the serum of normal and model rats was developed using UPLC-LTQ-Orbitrap-MS; finally, the transitional components in the blood were systematically compared and analyzed by multivariate statistical analysis. A total of 36 components of KXS were identified in the rat serum of the normal group, including 24 prototype components (including ginsenosides, triterpenoid acids of Poria cocos, polygala saponins, polygala xanthones and polygala ester) and 13 metabolites (including desugar, hydration and oxidation products of ginsenosides, triterpenoid acid hydroxylation, deoxygenation, demethylation, desaturation, and glycine-conjugated products of Poria cocos). Twenty KXS-relevant components were detected in the rat serum of the model group, including 11 prototypes and 9 metabolites. The normal group and the model group shared 12 common components, including 9 prototypes and 3 metabolites. The intestinal microecological balance of the model rats probably was destroyed, affecting the absorption/metabolism of saponins by the body, which resulted in fewer transitional components in the model group. This study reflected the drug-body interaction from an objective and accurate perspective, offering references and insights for elucidating the basis of active components and mechanism of action of KXS for treating AD.
Collapse
|
6
|
Sheng H, Li Y, Liu W, Wang Y, Wang S, Zhan Z, Lai Z, Guan B, Qiang S, Qian J, Wang Y. Identification of bioactive ingredients from Babaodan using UPLC-QTOF-MS analysis combined with network pharmacology guided bioassays. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1206:123356. [PMID: 35780747 DOI: 10.1016/j.jchromb.2022.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Babaodan (BBD) is a traditional Chinese medicine (TCM) prescribed for various inflammatory diseases, including viral hepatitis and acute genitourinary tract infection. Like other TCMs, BBD is a multi-component formula whose chemical composition and mode of action are largely unknown. The current study identified the bioactive ingredients of BBD using ultrahigh-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) followed by mass spectrometry molecular networking analysis. Subsequently, network pharmacology analysis was performed to predict the potential targets and pathways regulated by BBD. Eventually, a panel of compounds was selected and examined for their anti-inflammatory effects using lipopolysaccharide-stimulated RAW264.7 cells. Eighty-six compounds, including saponins, bile acids, and fatty acids, were identified. Tumor necrosis factor-alpha was identified as a key molecule. Pathways in cancer, inflammatory bowel disease, and hepatitis were predicted to be the major regulatory pathways. The results from bioassays validated ginsenoside Rb1, ginsenoside Rd, deoxycholic acid, chenodeoxycholic acid, and taurochenodeoxycholic acid as novel bioactive ingredients in BBD with anti-inflammatory effects. In conclusion, our study explains the anti-inflammatory efficacy of BBD from both chemical and biological aspects, which provides a scientific basis for the clinical application of BBD in inflammation-related diseases.
Collapse
Affiliation(s)
- Hongda Sheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yufei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhixue Zhan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, China
| | - Zhicheng Lai
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, China
| | - Bin Guan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, China
| | - Shifa Qiang
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Ye X, Xiong L, Fu Q, Wang B, Wang Y, Zhang K, Yang J, Kantawong F, Kumsaiyai W, Zhou J, Lan C, Wu J, Zeng J. Chemical characterization and DPP-IV inhibitory activity evaluation of tripeptides from Gynura divaricata (L.) DC. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115203. [PMID: 35304277 DOI: 10.1016/j.jep.2022.115203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynura divaricata (L.) DC. (GD), a herbal medicine, has been used for the prevention and treatment of hyperglycemia in China. However, hypoglycemic ingredients within GD have not yet been well studied. AIM OF THE STUDY The aim of this study was to explore undiscovered compounds with dipeptidyl peptidase IV (DPP-IV) inhibitory activity within GD. MATERIALS AND METHODS A four-step strategy was developed to explore undiscovered DPP-IV inhibitors within GD. First, the components were preliminarily characterized using UHPLC-HRMS combined with a library search. Second, preliminarily characterized compounds were searched for potential bioactivity. Third, a mixture of these preliminarily characterized compounds was isolated and thoroughly characterized based on fragmentation patterns associated with molecular networking. Fourth, the activities of these compounds were verified using DPP-IV inhibitory assay and molecular docking. RESULTS Diprotin A, a tripeptide inhibitor against DPP-IV, was identified. Thereafter, a mixture of twenty-five diprotin A analogs was isolated and characterized, which exhibited IC50 of 0.40 mg/mL for DPP-IV. Molecular docking results also confirmed the interactions between the tripeptide analogs and DPP-IV mainly via H-bonds and hydrophobic interactions. CONCLUSIONS This is the first report of DPP-IV inhibitors within GD. These findings demonstrate that the extract of GD might be beneficial for the treatment of type 2 diabetes mellitus, and is expected to promote further development and utilization of GD in herbal medicine.
Collapse
Affiliation(s)
- Xinyuan Ye
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Ling Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Binyou Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Yiwei Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Jie Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China; Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai, Thailand.
| | - Fahsai Kantawong
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai, Thailand.
| | - Warunee Kumsaiyai
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai, Thailand.
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China; Education Ministry Key Laboratory of Medical Electrophysiology, Luzhou, China; Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.
| | - Cai Lan
- School of Pharmacy, Southwest Medical University, Luzhou, China; Education Ministry Key Laboratory of Medical Electrophysiology, Luzhou, China; Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China; Education Ministry Key Laboratory of Medical Electrophysiology, Luzhou, China; Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Wang CZ, Wan C, Luo Y, Zhang CF, Zhang QH, Chen L, Park CW, Kim SH, Liu Z, Lager M, Xu M, Hou L, Yuan CS. Ginseng berry concentrate prevents colon cancer via cell cycle, apoptosis regulation, and inflammation-linked Th17 cell differentiation. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2021; 72. [PMID: 34374659 DOI: 10.26402/jpp.2021.2.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023]
Abstract
The Asian ginseng root (Panax ginseng C.A. Meyer) is a very commonly used herbal medicine worldwide. Ginseng fruit, including the berry (or pulp) and seed, is also valuable for several health conditions including immunostimulation and cancer chemoprevention. In this study, the anticancer and anti-proliferative effects of the extracts of ginseng berry and seed were evaluated. The ginsenosides in the ginseng berry concentrate (GBC) and ginseng seed extract (GSE) were analyzed. We then evaluated their anti-colorectal cancer potentials, including antiproliferation, cell cycle arrest, and apoptotic induction. Further investigation consisted of the berry's adaptive immune responses, such as the actions on the differentiation of T helper cells Treg, Th1, and Th17. The major constituents in GBC were ginsenosides Re and Rd, which can be compared to those in the root. The GBC significantly inhibited colon cancer cell growth, and its anti-proliferative effect involved mechanisms including G2/M cell cycle arrest via upregulation of cyclin A and induction of apoptosis via regulation of apoptotic related gene expressions. GBC also downregulated the expressions of pro-inflammatory cytokine genes. For the adaptive immune responses, GBC did not influence Th1 and Treg cell differentiation but significantly inhibited Th17 cell differentiation and thus regulated the balance of Th17/Treg for adaptive immunity. Although no ginsenoside was detected in the GSE, interestingly, it obviously enhanced colon cancer cell proliferation with the underlined details to be determined. Our results suggested that GBC is a promising dietary supplement for cancer chemoprevention and immunomodulation.
Collapse
Affiliation(s)
- C-Z Wang
- Central Laboratory, No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China.,Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - C Wan
- Central Laboratory, No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China.,Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - Y Luo
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - C-F Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Q-H Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - L Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - C W Park
- Health Care Research Institute Research and Development Center, AmorePacific Corporetion, Yongin, Republic of Korea
| | - S H Kim
- Health Care Research Institute Research and Development Center, AmorePacific Corporetion, Yongin, Republic of Korea
| | - Z Liu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - M Lager
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - M Xu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - L Hou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - C-S Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA. .,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Wang S, Cai Y, Feng Q, Gao J, Teng B. Pseudoginsengenin DQ exerts antitumour activity against hypopharyngeal cancer cells by targeting the HIF-1α-GLUT1 pathway. Cancer Cell Int 2021; 21:382. [PMID: 34281558 PMCID: PMC8287670 DOI: 10.1186/s12935-021-02080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ginsenosides have been reported to possess a variety of biological activities. Synthesized from the ginsenoside protopanaxadiol (PPD), the octanone pseudoginsengenin DQ (PDQ) may have robust pharmacological effects as a secondary ginsenoside. Nevertheless, its antitumour activity and molecular mechanism against hypopharyngeal cancer cells remain unclear. METHODS Cell Counting Kit8 assays, cell cycle assays and cell apoptosis assays were conducted to assess FaDu cell proliferation, cell phase and apoptosis. The interactions between PDQ and HIF-1α were investigated by a molecular docking study. The expression of HIF-1α, GLUT1, and apoptosis-related proteins was detected by Western blotting, direct stochastic optical reconstruction microscopy (dSTORM) and qRT-PCR. A glucose uptake assay was used to assess the glucose uptake capacity of FaDu cells. RESULTS PDQ suppressed proliferation, reduced glucose uptake, and induced cell cycle arrest and apoptosis in FaDu cells. A molecular docking study demonstrated that PDQ could interact with the active site of HIF-1α. PDQ decreased the expression and mRNA levels of HIF-1α and its downstream factor GLUT1. Moreover, the dSTORM results showed that PDQ reduced GLUT1 expression on the cell membrane and inhibited GLUT1 clustering. CONCLUSION Our work showed that the antitumour effect of PDQ was related to the downregulation of the HIF-1α-GLUT1 pathway, suggesting that PDQ could be a potential therapeutic agent for hypopharyngeal cancer treatment.
Collapse
Affiliation(s)
- Sanchun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Qingjie Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Bo Teng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Liu M, Cai M, Ding P. Oligosaccharides from Traditional Chinese Herbal Medicines: A Review of Chemical Diversity and Biological Activities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:577-608. [PMID: 33730992 DOI: 10.1142/s0192415x21500269] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Most of traditional Chinese herbal medicine (TCHM) substances come from medicinal plants, among which oligosaccharides have gradually attracted widespread attention at home and abroad due to their important biological activities and great medicinal potential. Numerous in vitro and in vivo experiments exhibited that oligosaccharides possess various activities, such as antitumor, anti-oxidation, modulate the gut microflora, anti-inflammatory, anti-infection, and immune-regulatory activities. Generally, biological activities are closely related to chemical structures, including molecular weight, monosaccharide composition, glycosidic bond connection, etc. The structural analysis of oligosaccharides is an important basis for studying their structure-activity relationship, but the structural diversity and complexity of carbohydrate compounds limit the study of oligosaccharides activities. Understanding the structures and biological functions of oligosaccharides is important for the development of new bioactive substances with natural oligosaccharides. This review provides a systematic introduction of the current knowledge of the chemical structures and biological activities of oligosaccharides. Most importantly, the reported chemical characteristics and biological activities of the famous TCHM oligosaccharides were briefly summarized, including Morinda officinalis, Rehmannia glutinosa, Arctium lappa, Polygala tenuifolia, Panax ginseng, Lycium barbarum and Astragalus membranaceus. TCHM oligosaccharides play an important role in nutrition, health care, disease diagnosis and prevention as well as have broad application prospects in the field of medicine.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
11
|
A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem 2020; 90:107402. [PMID: 33338839 DOI: 10.1016/j.compbiolchem.2020.107402] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has been used for more than 2000 years in China. TCM has received wide attention recently due to its unique charm. At the same time, its main obstacles have attracted wide attention, including vagueness of drug composition and treatment mechanism. With the development of virtual screening technology, more and more Chinese medicine compounds have been studied to discover the potential active components and mechanisms of action. Molecular docking is a computer technology based on structural design. Network pharmacology establishes powerful and comprehensive databases to understand the relationship between TCM and disease network. In this review, emergent uses and applications of two techniques and further superiorities of the two techniques when embarked to boil down into a tidy system were illustrated. A combination of the two provides a theoretical basis and technical support for the construction of modern TCM based on the compatibility of components and accelerates the realization of two basic elements as well, including the clearness of the pharmacodynamic substances and explanation of the effect of TCM.
Collapse
|
12
|
Wang CZ, Wan JY, Wan J, Wang S, Luo Y, Zeng J, Yao H, Zhang CF, Zhang QH, Sawadogo WR, Xu M, Du W, Qi LW, Li P, Yuan CS. Human intestinal microbiota derived metabolism signature from a North American native botanical Oplopanax horridus with UPLC/Q-TOF-MS analysis. Biomed Chromatogr 2020; 34:e4911. [PMID: 32496571 DOI: 10.1002/bmc.4911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 01/23/2023]
Abstract
Oplopanax horridus, widely distributed in North America, is an herbal medicine traditionally used by Pacific indigenous peoples for various medical conditions. After oral ingestion, constituents in O. horridus extract (OhE) could be converted to their metabolites by the enteric microbiome before absorption. In this study, in order to mimic gut environment, the OhE was biotransformed using the enteric microbiome of healthy human subjects. For accurate and reliable data collection with optimized approaches in sample preparation and analytical conditions, ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry were used to characterize parent constituents and their metabolites. In the extract, 20 parent compounds were identified including polyynes, sesquiterpenes, monoterpeondids, phenylpropanoids and phenolic acids. After the biotransformation, a total of 78 metabolites were identified, of which 37 belonged to polyynes metabolites. The common biotransformation pathways are hydroxylation, acetylization, methylation and demethylation. Based on the pathway distributions, the metabolism signature of OhE has been explored. The metabolism pathways of OhE compounds are dependent on their structural classifications and hydrophilic/hydrophobic properties. In summary, with comprehensive analysis, we systematically investigated human microbiome-derived OhE metabolites. The enteric microbial metabolism signature provides novel information for future effective use of O. horridus.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Jin-Yi Wan
- National Institute of Chinese Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Wan
- National Institute of Chinese Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shilei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yun Luo
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Jinxiang Zeng
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Haiqiang Yao
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Qi-Hui Zhang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Wamtinga Richard Sawadogo
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Ming Xu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Wei Du
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA.,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Characterization and Identification of Prenylated Flavonoids from Artocarpus heterophyllus Lam. Roots by Quadrupole Time-Of-Flight and Linear Trap Quadrupole Orbitrap Mass Spectrometry. Molecules 2019; 24:molecules24244591. [PMID: 31847475 PMCID: PMC6943520 DOI: 10.3390/molecules24244591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, a combination of quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and linear trap quadrupole orbitrap mass spectrometry (LTQ-Orbitrap-MS) was performed to investigate the fragmentation behaviors of prenylated flavonoids (PFs) from Artocarpus plants. Fifteen PFs were selected as the model molecules and divided into five types (groups A–E) according to their structural characteristics in terms of the position and existing form of prenyl substitution in the flavone skeleton. The LTQ-Orbitrap-MSn spectra of the [M − H]− ions for these compounds provided a wealth of structural information on the five different types of compounds. The main fragmentation pathways of group A were the ortho effect and retro Diels–Alder (RDA), and common losses of C4H10, CO, and CO2. The compounds in group B easily lose C6H12, forming a stable structure of a 1,4-dienyl group, unlike those in group A. The fragmentation pathway for group C is characterized by obvious 1,4A−, 1,4B− cracking of the C ring. The diagnostic fragmentation for group D is obvious RDA cracking of the C ring and the successive loss of CH3 and H2O in the LTQ-Orbitrap-MSn spectra. Fragmentation with successive loss of CO or CO2, ·CH3, and CH4 in the LTQ-Orbitrap-MSn spectra formed the characteristics of group E. The summarized fragmentation rules were successfully exploited to identify PFs from Artocarpusheterophyllus, a well-known Artocarpus plant, which led to the identification of a total of 47 PFs in this plant.
Collapse
|