1
|
Zuo T, Luo F, Suo Y, Chang Y, Wang Z, Jin H, Yu J, Xing S, Guo Y, Wang D, Wei F, Wang G, Sun L, Ma S. Refined Cumulative Risk Assessment of Pb, Cd, and as in TCM Decoction Based on Bioavailability through In Vitro Digestion/MDCK Cells. TOXICS 2024; 12:528. [PMID: 39058180 PMCID: PMC11281054 DOI: 10.3390/toxics12070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
In this study, the oral bioavailability of Pb, Cd, and As in three types of traditional Chinese medicines (TCMs) and TCM decoctions were investigated through in vitro PBET digestion/MDKC cell model. Furthermore, a novel cumulative risk assessment model associated with co-exposure of heavy metal(loid)s in TCM and TCM decoction based on bioavailability was developed using hazard index (HI) for rapid screening and target organ toxicity dose modification of the HI (TTD) method for precise assessment. The results revealed that the bioavailability of Pb, Cd, and As in three types of TCM and TCM decoction was 5.32-72.49% and 4.98-51.97%, respectively. After rapid screening of the co-exposure health risks of heavy metal(loid)s by the HI method, cumulative risk assessment results acquired by TTD method based on total metal contents in TCMs indicated that potential health risks associated with the co-exposure of Pb, Cd, and As in Pheretima aspergillum (E. Perrier) and Oldenlandia diffusa (Willd.) Roxb were of concern. However, considering both the factors of decoction and bioavailability, TTD-adjusted HI outcomes for TCMs in this study were <1, indicating acceptable health risks. Collectively, our innovation on cumulative risk assessment of TCM and TCM decoction provides a novel strategy with the main purpose of improving population health.
Collapse
Affiliation(s)
- Tiantian Zuo
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Feiya Luo
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Yaqiong Suo
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Yan Chang
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Zhao Wang
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Hongyu Jin
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Jiandong Yu
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Shuxia Xing
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Yuansheng Guo
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Dandan Wang
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Feng Wei
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Gangli Wang
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Lei Sun
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
| | - Shuangcheng Ma
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (T.Z.); (F.L.); (Y.S.); (Y.C.); (Z.W.); (H.J.); (J.Y.); (S.X.); (Y.G.); (D.W.); (G.W.); (L.S.)
- Chinese Pharmacopeia Commission, Beijing 100061, China
| |
Collapse
|
2
|
Ruan Y, Yuan R, He J, Jiang Y, Chu S, Chen N. New perspective on sustained antidepressant effect: focus on neurexins regulating synaptic plasticity. Cell Death Discov 2024; 10:205. [PMID: 38693106 PMCID: PMC11063156 DOI: 10.1038/s41420-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Depression is highly prevalent globally, however, currently available medications face challenges such as low response rates and short duration of efficacy. Additionally, depression mostly accompany other psychiatric disorders, further progressing to major depressive disorder without long-term effective management. Thus, sustained antidepressant strategies are urgently needed. Recently, ketamine and psilocybin gained attention as potential sustained antidepressants. Review of recent studies highlights that synaptic plasticity changes as key events of downstream long-lasting changes in sustained antidepressant effect. This underscores the significance of synaptic plasticity in sustained antidepressant effect. Moreover, neurexins, key molecules involved in the regulation of synaptic plasticity, act as critical links between synaptic plasticity and sustained antidepressant effects, involving mechanisms including protein level, selective splicing, epigenetics, astrocytes, positional redistribution and protein structure. Based on the regulation of synaptic plasticity by neurexins, several drugs with potential for sustained antidepressant effect are also discussed. Focusing on neurexins in regulating synaptic plasticity promises much for further understanding underlying mechanisms of sustained antidepressant and the next step in new drug development. This research represents a highly promising future research direction.
Collapse
Affiliation(s)
- Yuan Ruan
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ruolan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiaqi He
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yutong Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Naihong Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
3
|
Pan J, Lu Y, Wang S, Ma T, Xue X, Zhang Z, Mao Q, Guo D, Ma K. Synergistic neuroprotective effects of two natural medicinal plants against CORT-induced nerve cell injury by correcting neurotransmitter deficits and inflammation imbalance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155102. [PMID: 37748389 DOI: 10.1016/j.phymed.2023.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Lilium henryi Baker (Liliaceae) and Rehmannia glutinosa (Gaertn.) DC. (Plantaginaceae) were the traditional natural medicinal plants for the treatment of depression, but the antidepression mechanism of two plants co-decoction (Also known as Lily bulb and Rehmannia decoction (LBRD) drug-containing serum (LBRDDS) has not been elucidated in the in vitro model of depression. MATERIAL AND METHODS Here, UHPLC-Q-TOF/MS was used to identify the active components of LBRDDS and the potential effector substance was identified by bioinformatics analysis. CORT-induced nerve cells cytotoxicity was used to investigate the neuroprotection effect of LBRDDS and the underlying pharmacological mechanisms were explored by multiple experimental methods such as molecular docking, immunofluorescence, gain- or loss-of function experiments. RESULTS Bioactive compounds in LBRDDS absorbed from intestinal tract were transformed or metabolized by the gut microbiota including palmitic acid, adrenic acid, linoleic acid, arachidonic acid and docosapentaenoic acid. Network pharmacology analysis and molecular docking of showed fatty acid metabolism, neurotransmitter synthesis and neuroinflammation may be potential therapeutic targets of LBRDDS. LBRDDS can improve the activity of model cells, reduce cytotoxicity of lactate dehydrogenase, recover neurotransmitter imbalance, relieve inflammatory damage, down-regulate the expression of miRNA-144-3p, increase the mRNAs and protein expression level of Gad-67 and VGAT, and promote the synthesis and transport of GABA. CONCLUSION Therefore, LBRDDS exerts neuroprotective effects by correcting neurotransmitter deficits and inflammation imbalance in the CORT-induced nerve cell injury model.
Collapse
Affiliation(s)
- Jin Pan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yanting Lu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Sijia Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ting Ma
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaoyan Xue
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhe Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qiancheng Mao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Dongjing Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
4
|
Shen R, Li Z, Wang H, Wang Y, Li X, Yang Q, Fu Y, Li M, Gao LN. Chinese Materia Medica in Treating Depression: The Role of Intestinal Microenvironment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1927-1955. [PMID: 37930334 DOI: 10.1142/s0192415x23500854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Depression is a highly heterogeneous mental illness. Drug treatment is currently the main therapeutic strategy used in the clinic, but its efficacy is limited by the modulation of a single target, slow onset, and side effects. The gut-brain axis is of increasing interest because intestinal microenvironment disorders increase susceptibility to depression. In turn, depression affects intestinal microenvironment homeostasis by altering intestinal tissue structure, flora abundance and metabolism, hormone secretion, neurotransmitter transmission, and immune balance. Depression falls into the category of "stagnation syndrome" according to Traditional Chinese Medicine (TCM), which further specifies that "the heart governs the spirit and is exterior-interior with the small intestine". However, the exact mechanisms of the means by which the disordered intestinal microenvironment affects depression are still unclear. Here, we present an overview of how the Chinese materia medica (CMM) protects against depression by repairing intestinal microenvironment homeostasis. We review the past five years of research progress in classical antidepressant TCM formulae and single CMMs on regulating the intestinal microenvironment for the treatment of depression. We then analyze and clarify the multitarget functions of CMM in repairing intestinal homeostasis and aim to provide a new theoretical basis for CMM clinical application in the treatment of depression.
Collapse
Affiliation(s)
- Ruhui Shen
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Zhipeng Li
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Yongchao Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Xiaofang Li
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Qian Yang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Yingjie Fu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Ming Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
- Jining Key Laboratory of Depression Prevention and Treatment, Jining Medical University, Jining, Shandong 272067, P. R. China
| |
Collapse
|
5
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
6
|
Park HR, Lee H, Cho WK, Ma JY. Pro-neurogenic effects of Lilii Bulbus on hippocampal neurogenesis and memory. Biomed Pharmacother 2023; 164:114951. [PMID: 37267636 DOI: 10.1016/j.biopha.2023.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Lilii Bulbus, the bulb of tiger lily, has anti-oxidant and anti-tumorigenic properties. However, the effects of Lilii Bulbus on learning, memory, and hippocampal neurogenesis remain unknown. This study investigated whether water extract of Lilii Bulbus (WELB) affects memory ability and hippocampal neurogenesis. Behavioral analyses (Morris water maze and passive avoidance test), immunohistochemistry, cell proliferation assay, and immunoblot analysis were performed. WELB (50 and 100 mg/kg; for 14 days) enhanced memory retention and spatial memory in normal mice as well as in scopolamine-treated mice with memory deficits. Furthermore, the administration of WELB significantly increased the number of proliferating cells and surviving newborn cells in the dentate gyrus of the hippocampus in normal mice. We found that WELB has a pro-neurogenic effect by increasing the activation of brain-derived neurotrophic factor (BDNF)/cAMP response element-binding protein (CREB) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) in the hippocampus. Moreover, we confirmed that WELB (100 and 200 μg/ml) significantly increased NE-4 C and primary embryonic NSCs proliferation. Inhibition/knockdown of MEK/ERK blocked WELB-induced MEK/ERK phosphorylation and NSCs proliferation. Hence, MEK/ERK activation was required in WELB-induced NSCs proliferation. Our study demonstrates the first evidence for WELB promoting hippocampal neurogenesis and memory; pro-neurogenic activity may enhance brain plasticity, with implications for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hee Ra Park
- Department of KM Medicine Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Heeeun Lee
- Kine Sciences Inc., 24, Eonju-ro85gil, Gangnam-gu, Seoul 06221, Republic of Korea
| | - Won-Kyung Cho
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| |
Collapse
|
7
|
Tao W, Yao G, Yue Q, Xu C, Hu Y, Cheng X, Zhao T, Qi M, Chen G, Zhao M, Yu Y. 14-3-3ζ Plays a key role in the modulation of neuroplasticity underlying the antidepressant-like effects of Zhi-Zi-Chi-Tang. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154888. [PMID: 37257329 DOI: 10.1016/j.phymed.2023.154888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Zhi-Zi-Chi-Tang (ZZCT) is an effective traditional Chinese medicinal formula. ZZCT has been used for the treatment of depression for centuries. Its clinical efficacy in relieving depression has been confirmed. However, the molecular mechanisms of ZZCT regarding neuroplasticity in the pathogenesis of depression have not yet been elucidated. PURPOSE The present study aimed to examine the effects of ZZCT on neuroplasticity in mice exposed to chronic unpredictable mild stress (CUMS), and to explore the underlying molecular mechanisms. METHODS For this purpose, a murine model of depression was established using the CUMS procedure. Following the intragastric administration of ZZCT or fluoxetine, classic behavioral experiments were performed to observe the efficacy of ZZCT as an antidepressant. Immunofluorescence was used to label and quantify microtubule-associated protein (MAP2) and postsynaptic density protein (PSD95) in the hippocampus. Golgi staining was applied to visualize the dendritic spine density of neurons in the hippocampi. Isolated hippocampal slices were prepared to induce long-term potentiation (LTP) in the CA1 area. The hippocampal protein expression levels of glycogen synthase kinase-3β (GSK-3β), p-GSK-3β (Ser9), cAMP response element binding protein (CREB), p-CREB (Ser133), brain-derived neurotrophic factor (BDNF) and 14-3-3ζ were detected using western blot analysis. The interaction of 14-3-3ζ and p-GSK-3β (Ser9) was examined using co-immunoprecipitation. LV-shRNA was used to knockdown 14-3-3ζ by an intracerebroventricular injection. RESULTS ZZCT (6 g/kg) and fluoxetine (20 mg/kg) alleviated depressive-like behavior, restored hippocampal MAP2+ PSD95+ intensity, and reversed the dendritic spine density of hippocampal neurons and LTP in the CA1 region of mice exposed to CUMS. Both low and high doses of ZZCT (3 and 6 g/kg) significantly promoted the binding of 14-3-3ζ to p-GSK-3β (Ser9) in the hippocampus, and ZZCT (6 g/kg) significantly promoted the phosphorylation of GSK-3β Ser9 and CREB Ser133 in the hippocampus. ZZCT (3 and 6 g/kg) upregulated hippocampal BDNF expression in mice exposed to CUMS. LV-sh14-3-3ξ reduced the antidepressant effects of ZZCT. CONCLUSION ZZCT exerted antidepressant effects against CUMS-stimulated depressive-like behavior mice. The knockdown of 14-3-3ζ using lentivirus confirmed that 14-3-3ζ was involved in the ZZCT-mediated antidepressant effects through GSK-3β/CREB/BDNF signaling. On the whole, these results suggest that the antidepressant effects of ZZCT are attributed to restoring damage by neuroplasticity enhancement via the 14-3-3ζ/GSK-3β/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Neurology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiyu Yue
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Xu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - XiaoLan Cheng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, and Research Center for Formula and Patterns, Jinan University, Guangzhou, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Yu
- Neurology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China.
| |
Collapse
|
8
|
Exploring the Mechanism of Action of Trachelospermi Caulis et Folium for Depression Based on Experiments: Combining Network Pharmacology and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3945063. [PMID: 36506595 PMCID: PMC9729047 DOI: 10.1155/2022/3945063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Objective To reveal the safety, efficacy, and mechanism of action of Trachelospermi Caulis et Folium (TCEF) for treating depression. Methods The maximum dose method was employed to evaluate the safety of TCEF, and its antidepressant activity was assessed using the tail suspension and sugar water depletion tests. The main components of TCEF were determined using ultrahigh performance liquid chromatography coupled with quadrupole exactive orbitrap mass spectrometer (UHPLC-Q-EOMS). The active ingredients and their action targets were obtained using network pharmacology with SwissADME and SwissTargetPrediction screening, and the targets of depression were obtained using GeneCards, DrugBank, etc. The drug and depression-related targets were intersected and analyzed via PPI network, GO, and KEGG. Subsequently, the binding ability of the core components of TCEF to the core targets was validated via molecular docking and simulation. Results No statistically significant difference was observed between the normal and TCEF groups in terms of body weight, visceral index, and biochemical parameters (P > 0.05). Compared with the model group, all dose groups of TCEF had reduced the immobility time of tail suspension (P < 0.05) and increased the rate of sugar water consumption (P < 0.05). UHPLC-Q-EOMS was employed to identify 59 major components of TCEF, and network pharmacology analysis was used to screen 48 active components of TCEF for treating depression, corresponding to 139 relevant targets, including ALB, AKT1, TNF, ESR1, and CTNNB1. The involved pathways include neuroactive ligand-receptor interaction. The molecular docking results indicated that the core components have a good binding activity to the core targets. Conclusions TCEF is a relatively safe antidepressant medicine that exerts therapeutic effects through multiple components, targets, and pathways, providing a new idea and theoretical basis for future use of TCEF to treat depression.
Collapse
|