1
|
Huang L, Zhang H, Xia W, Yao N, Xu R, He Y, Yang Q. Structural characteristics, biological activities and market applications of Rehmannia Radix polysaccharides: A review. Int J Biol Macromol 2024; 282:136554. [PMID: 39423982 DOI: 10.1016/j.ijbiomac.2024.136554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Rehmannia Radix Polysaccharides (RRPs) are biopolymers that are isolated and purified from the roots of Rehmannia glutinosa Libosch, which have attracted considerable attention because of their biological activities, such as anti-inflammatory, antioxidant, immunomodulatory, anti-tumor, hypoglycaemic etc. In this manuscript, the composition and structural characteristics of RRPs are reviewed. Moreover, the research progress on the conformational relationships and biological activities of RRPs is systematically summarized. Additionally, this manuscript also analyzes 155 patents using RRPs as the main raw materials to explore the status quo and bottleneck for the development and utilization of RRPs. In summary, this review not only provides a theoretical basis for future research on RRPs but also provides clear guidance for their market applications and innovation.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Haibo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nairong Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
2
|
Choi EH, Son SU, Shin KS. Structural characterization of rhamnogalacturonan-I purified from Curcuma longa and its anti-lung cancer efficacy via immunostimulation. Food Sci Biotechnol 2024; 33:3591-3606. [PMID: 39493383 PMCID: PMC11525377 DOI: 10.1007/s10068-024-01595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 11/05/2024] Open
Abstract
In this study, we investigated the structural characteristics, immunostimulatory activities, and anti-cancer effects of turmeric-derived polysaccharides (TPE-I). Several results related to the structural features revealed that TPE-I possesses a typical rhamnogalacturonan (RG)-I structure. Furthermore, macrophage cytokine secretion was significantly reduced by partial side chain and main chain cleavage of TPE-I via sequential enzymatic and chemical degradation. In contrast, the administration of TPE-I effectively enhanced the cytotoxic effects of natural killer (NK) cells and cytotoxic T lymphocytes against tumor cells. Additionally, the administration of TPE-I potently inhibited lung cancer induced by Colon26-M3.1, and this efficacy persisted even in mice with NK cell function blocked by anti-asialo GM1 antibody. Consequently, it was confirmed that TPE-I, a RG-I type polysaccharide purified from turmeric, has potent anticancer effects which are closely related to immunostimulation. The results of this study support the hypothesis that curcuminoids are not the only bioactive substances present in turmeric. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01595-z.
Collapse
Affiliation(s)
- Eun Hye Choi
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227 Republic of Korea
| | - Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227 Republic of Korea
- Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841 Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227 Republic of Korea
| |
Collapse
|
3
|
Zhang J, Zhang R, Jin S, Feng X. Curcumin, a plant polyphenol with multiple physiological functions of improving antioxidation, anti-inflammation, immunomodulation and its application in poultry production. J Anim Physiol Anim Nutr (Berl) 2024; 108:1890-1905. [PMID: 39081000 DOI: 10.1111/jpn.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 11/07/2024]
Abstract
Finding environmentally friendly, effective and residue-free alternatives to antibiotics has become a research priority. This is due to the ban on antibiotics in animal feed. Curcumin is a polyphenol extracted from the rhizome of turmeric that has antioxidant, anti-inflammatory and immunomodulatory properties. Curcumin has been widely demonstrated as a traditional flavoured agent and herbal medicine in the fight against diseases. In recent years, curcumin has been extensively studied in animal production, especially in poultry production. This article reviews the source, structure, metabolism and biological functions of curcumin and focuses on the application of curcumin in poultry production. In terms of production performance, curcumin can improve the growth performance of poultry, increase the egg production rate of laying hens and alleviate the negative effects of heat stress on the production performance of poultry and livestock. In terms of meat quality, curcumin can improve poultry meat quality by regulating lipid metabolism and antioxidant capacity. In terms of health, curcumin can improve immunity. Since mycotoxins have been a major problem in poultry production, this article also reviews the role of curcumin in helping poultry resist toxins. It is hoped that the review in this article can provide a concrete theoretical basis and research ideas for the research and application of curcumin in the field of poultry.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ruoshi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Sanjun Jin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Feng Y, Pan M, Li R, He W, Chen Y, Xu S, Chen H, Xu H, Lin Y. Recent developments and new directions in the use of natural products for the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155812. [PMID: 38905845 DOI: 10.1016/j.phymed.2024.155812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.
Collapse
Affiliation(s)
- Yaqian Feng
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Mengting Pan
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yangyang Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Hui Chen
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China.
| | - Huilong Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
5
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Iyengar P, Godoy-Brewer G, Maniyar I, White J, Maas L, Parian AM, Limketkai B. Herbal Medicines for the Treatment of Active Ulcerative Colitis: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:934. [PMID: 38612967 PMCID: PMC11013716 DOI: 10.3390/nu16070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Herbal medicines are used by patients with IBD despite limited evidence. We present a systematic review and meta-analysis of randomized controlled trials (RCTs) investigating treatment with herbal medicines in active ulcerative colitis (UC). A search query designed by a library informationist was used to identify potential articles for inclusion. Articles were screened and data were extracted by at least two investigators. Outcomes of interest included clinical response, clinical remission, endoscopic response, endoscopic remission, and safety. We identified 28 RCTs for 18 herbs. In pooled analyses, when compared with placebo, clinical response rates were significantly higher for Indigo naturalis (IN) (RR 3.70, 95% CI 1.97-6.95), but not for Curcuma longa (CL) (RR 1.60, 95% CI 0.99-2.58) or Andrographis paniculata (AP) (RR 0.95, 95% CI 0.71-1.26). There was a significantly higher rate of clinical remission for CL (RR 2.58, 95% CI 1.18-5.63), but not for AP (RR 1.31, 95% CI 0.86-2.01). Higher rates of endoscopic response (RR 1.56, 95% CI 1.08-2.26) and remission (RR 19.37, 95% CI 2.71-138.42) were significant for CL. CL has evidence supporting its use as an adjuvant therapy in active UC. Research with larger scale and well-designed RCTs, manufacturing regulations, and education are needed.
Collapse
Affiliation(s)
- Preetha Iyengar
- Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA;
| | | | - Isha Maniyar
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA;
| | - Jacob White
- Welch Library, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Laura Maas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Alyssa M. Parian
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Berkeley Limketkai
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA;
| |
Collapse
|
7
|
Yang Q, Zhang F, Chen H, Hu Y, Yang N, Yang W, Wang J, Yang Y, Xu R, Xu C. The differentiation courses of the Tfh cells: a new perspective on autoimmune disease pathogenesis and treatment. Biosci Rep 2024; 44:BSR20231723. [PMID: 38051200 PMCID: PMC10830446 DOI: 10.1042/bsr20231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The follicular helper T cells are derived from CD4+T cells, promoting the formation of germinal centers and assisting B cells to produce antibodies. This review describes the differentiation process of Tfh cells from the perspectives of the initiation, maturation, migration, efficacy, and subset classification of Tfh cells, and correlates it with autoimmune disease, to provide information for researchers to fully understand Tfh cells and provide further research ideas to manage immune-related diseases.
Collapse
Affiliation(s)
- Qingya Yang
- Division of Rheumatology, People’s Hospital of Mianzhu, Mianzhu, Sichuan, 618200, China
| | - Fang Zhang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Hongyi Chen
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yuman Hu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ning Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Wenyan Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Jing Wang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yaxu Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ran Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Chao Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| |
Collapse
|
8
|
Wan C, Ma Q, Anderson S, Zhang QH, Zhang CF, Wang AH, Bell E, Hou L, Yuan CS, Wang CZ. Effects of Curcuminoids and Surfactant-Formulated Curcumin on Chemo-Resistant Colorectal Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1577-1594. [PMID: 37465963 DOI: 10.1142/s0192415x23500714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death in the United States, and chronic gut inflammation is a risk factor for CRC initiation and development. Curcuma longa L., or turmeric, has become one of the most studied herbal medicines in recent years due to its anticancer potentials. It is generally accepted that the major component in turmeric is curcuminoids, and the active constituent in curcuminoids is curcumin. However, unprocessed curcumin is characterized by poor water solubility, which means low bioavailability in humans. To increase the bioavailability of curcumin, in this study, we utilized a novel surfactant-formulated curcumin (CuminUP60[Formula: see text]) and evaluated its CRC chemopreventive activities. Compared with the chemo-sensitive CRC cell line HCT-116, the management of the CRC SW-480 cell line is a challenge, since the latter is chemo-resistant. In other words, these cancer cells resist the effects of the chemotherapy. Using the newly formulated CuminUP60[Formula: see text] water solution, this study demonstrated its strong antiproliferative effects on the SW-480 cells in a dose- and time-dependent manner. This new formulation induced early apoptosis and arrested the cell cycle in the G2/M phase via the upregulation of cyclin B1. We also observed that this new formulation possessed inhibitory effects on Th17 cell differentiation, which regulates the body's immune response against gut malignancies. In summary, our results exhibited a potential clinical utility of the surfactant-formulated curcumin in chemo-resistant colorectal cancer management.
Collapse
Affiliation(s)
- Chunping Wan
- Central Laboratory, No. 1, Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, P. R. China
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Qinge Ma
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China
| | - Samantha Anderson
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Angela H Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Emma Bell
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Lifei Hou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun 2023; 134:102976. [PMID: 36525939 DOI: 10.1016/j.jaut.2022.102976] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells with the phenotype of mainly expressing surface molecules C-X-C motif chemokine receptor type 5 (CXCR5), inducible co-stimulator (ICOS), secreting cytokine interleukin-21 (IL-21) and requiring the transcription factor B cell lymphoma 6 (BCL-6) have been recently defined as a new subset of CD4+ T cells. They exist in germinal centers (GCs) of lymphoid organs and in peripheral blood. With the ability to promote B cell development, GC formation and antibody production, Tfh cells play critical roles in the pathogenesis of many autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), etc. The aberrant proliferation and function of Tfh cells will cause the pathological process like autoantibody production and tissue injury. In this paper, we review the recent advances in Tfh cell biology and their roles in autoimmune diseases, with a mention of their use as therapeutic targets, which will shed more light on the pathogenesis and treatment of certain autoimmune diseases.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China.
| |
Collapse
|
11
|
Moudgil KD, Venkatesha SH. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int J Mol Sci 2022; 24:95. [PMID: 36613560 PMCID: PMC9820125 DOI: 10.3390/ijms24010095] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammation is an integral part of autoimmune diseases, which are caused by dysregulation of the immune system. This dysregulation involves an imbalance between pro-inflammatory versus anti-inflammatory mediators. These mediators include various cytokines and chemokines; defined subsets of T helper/T regulatory cells, M1/M2 macrophages, activating/tolerogenic dendritic cells, and antibody-producing/regulatory B cells. Despite the availability of many anti-inflammatory/immunomodulatory drugs, the severe adverse reactions associated with their long-term use and often their high costs are impediments in effectively controlling the disease process. Accordingly, suitable alternatives are being sought for these conventional drugs. Natural products offer promising adjuncts/alternatives in this regard. The availability of specific compounds isolated from dietary/medicinal plant extracts have permitted rigorous studies on their disease-modulating activities and the mechanisms involved therein. Here, we describe the basic characteristics, mechanisms of action, and preventive/therapeutic applications of 5 well-characterized natural product compounds (Resveratrol, Curcumin, Boswellic acids, Epigallocatechin-3-gallate, and Triptolide). These compounds have been tested extensively in animal models of autoimmunity as well as in limited clinical trials in patients having the corresponding diseases. We have focused our description on predominantly T cell-mediated diseases, such as rheumatoid arthritis, multiple sclerosis, Type 1 diabetes, ulcerative colitis, and psoriasis.
Collapse
Affiliation(s)
- Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Vita Therapeutics, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Zhong Y, Xiao Q, Kang Z, Huang J, Ge W, Wan Q, Wang H, Zhou W, Zhao H, Liu D. Astragalus polysaccharide alleviates ulcerative colitis by regulating the balance of Tfh/Treg cells. Int Immunopharmacol 2022; 111:109108. [PMID: 35926271 DOI: 10.1016/j.intimp.2022.109108] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
The immunomodulatory function of natural active ingredients has long been a focus of scientific research, with recent hotspots reporting targeted modulation of the follicular helper T cells (Tfh)/regulatory T cells (Treg) balance as an emerging strategy for the treatment of ulcerative colitis (UC). Here, dextran sodium sulfate induced mice UC and Astragalus polysaccharide (APS, 200 mg/kg/day) was administered simultaneously. In this study, APS effectively alleviated colitis in mice by improving survival rate, disease activity index (DAI), the change rate of body weight, colonic length and weight, and histopathological injury of the colon. Moreover, APS regulated the expression of inflammatory cytokines interleukin (IL)-2, IL-6, IL-12p70, IL-23, Tumour necrosis factor (TNF)-ɑ, and transforming growth factor (TGF)-β1 in colonic tissues of colitis mice. Importantly, APS significantly downregulated Tfh cell and the expression of its related nuclear transcription factors Blimp-1 and Bcl-6, and cytokine IL-21. Meanwhile, APS regulated the differentiation of Tfh subpopulations in colitis mice, with Tfh10 and Tfr significantly upregulated while Tfh1, Tfh17, and Tfh21 significantly downregulated. In addition, APS significantly upregulated Treg cells and the levels of its associated nuclear transcription factor Foxp3, and cytokine IL-10 in colitis mice. In conclusion, APS effectively alleviated UC by reshaping the balance of Tfh/Treg cells.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, Jiangxi Province, China
| | - Zengping Kang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haiyan Wang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Nanchang Medical College, Nanchang 330004, Jiangxi Province, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
13
|
Zheng L, Ji YY, Dai YC, Wen XL, Wu SC. Network pharmacology and molecular docking reveal zedoary turmeric-trisomes in Inflammatory bowel disease with intestinal fibrosis. World J Clin Cases 2022; 10:7674-7685. [PMID: 36158488 PMCID: PMC9372848 DOI: 10.12998/wjcc.v10.i22.7674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a complex chronic IBD that is closely associated with risk factors such as environment, diet, medications and lifestyle that may influence the host microbiome or immune response to antigens. At present, with the increasing incidence of IBD worldwide, it is of great significance to further study the pathogenesis of IBD and seek new therapeutic targets. Traditional Chinese medicine (TCM) treatment of diseases is characterized by multiple approaches and multiple targets and has a long history of clinical application in China. The mechanism underlying the effect of zedoary turmeric-trisomes on inducing mucosal healing in IBD is not clear.
AIM To explore the effective components and potential mechanism of zedoary turmeric-trisomes in the treatment of IBD with intestinal fibrosis using network pharmacology and molecular docking techniques.
METHODS The chemical constituents and targets of Rhizoma zedoary and Rhizoma sanarum were screened using the TCMSP database. The GeneCards database was searched to identify targets associated with intestinal fibrosis in IBD. The intersection of chemical component targets and disease targets was obtained using the Venny 2.1 online analysis platform, and the common targets were imported into the STRING 11.0 database to construct a protein interaction regulatory network. A “zedoary turmeric-trisomes-chemical composition-target-disease” network diagram was subsequently constructed using Cytoscape 3.7.2 software, and the topological properties of the network were analyzed using the “Network Analysis” plug-in. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the common targets were performed using the DAVID 6.8 database to elucidate the mechanism of zedoary turmeric-trisomes in the treatment of IBD. Subsequently, molecular docking of the compounds and targets with the highest intermediate values in the “zedoary turmeric-trisomes-chemical composition-target-disease” network was performed using Sybyl-x 2.1.1 software.
RESULTS A total of 5 chemical components with 60 targets were identified, as well as 3153 targets related to IBD and 44 common targets. The protein-protein interaction network showed that the core therapeutic targets included JUN, MAPK14, CASP3, AR, and PTGS2. The GO enrichment analysis identified 759 items, and the KEGG enrichment analysis yielded 52 items, including the cancer pathway, neuroactive ligand-receptor interaction, hepatitis B, and the calcium signaling pathway, reflecting the complex biological processes of the multicomponent, multitarget and multipathway treatment of diseases with zedoary turmeric-trisomes. Molecular docking showed that the compound bonded with the target through hydrogen bond interactions and exhibited good docking activity.
CONCLUSION This study identified the potential mechanism of action of zedoary turmeric-trisomes in the treatment of inflammatory bowel fibrosis using network pharmacology and molecular docking technology, providing a scientific basis for further expansion of their clinical use.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Yong-Yi Ji
- Department of Neurology, Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, GanSu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|