1
|
Zhang H, Hu C, Xue J, Jin D, Tian L, Zhao D, Li X, Qi W. Ginseng in vascular dysfunction: A review of therapeutic potentials and molecular mechanisms. Phytother Res 2022; 36:857-872. [DOI: org/10.1002/ptr.7369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/16/2021] [Indexed: 07/02/2024]
Abstract
AbstractVascular dysfunction can lead to a variety of fatal diseases, including cardiovascular and cerebrovascular diseases, metabolic syndrome, and cancer. Although a large number of studies have reported the therapeutic effects of natural compounds on vascular‐related diseases, ginseng is still the focus of research. Ginseng and its active substances have bioactive effects against different diseases with vascular dysfunction. In this review, we summarized the key molecular mechanisms and signaling pathways of ginseng, its different active ingredients or formula in the prevention and treatment of vascular‐related diseases, including cardiac‐cerebral vascular diseases, hypertension, diabetes complications, and cancer. Moreover, the bidirectional roles of ginseng in promoting or inhibiting angiogenesis have been highlighted. We systematically teased out the relationship between ginseng and vascular dysfunction, which could provide a basis for the clinical application of ginseng in the future.
Collapse
Affiliation(s)
- He Zhang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio‐Macromolecules of Chinese Medicine Changchun University of Chinese Medicine Changchun China
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
| | - Cheng Hu
- College of Laboratory Medicine Jilin Medical University Jilin City China
| | - Jiaojiao Xue
- College of Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Di Jin
- College of Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Lulu Tian
- College of Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio‐Macromolecules of Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio‐Macromolecules of Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Wenxiu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio‐Macromolecules of Chinese Medicine Changchun University of Chinese Medicine Changchun China
| |
Collapse
|
2
|
Zhang H, Hu C, Xue J, Jin D, Tian L, Zhao D, Li X, Qi W. Ginseng in vascular dysfunction: A review of therapeutic potentials and molecular mechanisms. Phytother Res 2022; 36:857-872. [PMID: 35026867 DOI: 10.1002/ptr.7369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
Vascular dysfunction can lead to a variety of fatal diseases, including cardiovascular and cerebrovascular diseases, metabolic syndrome, and cancer. Although a large number of studies have reported the therapeutic effects of natural compounds on vascular-related diseases, ginseng is still the focus of research. Ginseng and its active substances have bioactive effects against different diseases with vascular dysfunction. In this review, we summarized the key molecular mechanisms and signaling pathways of ginseng, its different active ingredients or formula in the prevention and treatment of vascular-related diseases, including cardiac-cerebral vascular diseases, hypertension, diabetes complications, and cancer. Moreover, the bidirectional roles of ginseng in promoting or inhibiting angiogenesis have been highlighted. We systematically teased out the relationship between ginseng and vascular dysfunction, which could provide a basis for the clinical application of ginseng in the future.
Collapse
Affiliation(s)
- He Zhang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Awortwe C, Makiwane M, Reuter H, Muller C, Louw J, Rosenkranz B. Critical evaluation of causality assessment of herb-drug interactions in patients. Br J Clin Pharmacol 2018; 84:679-693. [PMID: 29363155 DOI: 10.1111/bcp.13490] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this review was to assess the severity of adverse drug reactions (ADRs) due to herb-drug interactions (HDI) in patients taking herbs and prescribed medications based on published evidence. Electronic databases of PubMed, the Cochrane Library, Medline and Scopus were searched for randomized or nonrandomized clinical studies, case-control and case reports of HDI. The data were extracted and the causal relationship of ADRs as consequences of HDI assessed using Horn's drug interaction probability scale or Roussel Uclaf Causality Assessment Method scoring systems. The mechanism of interaction was ascertained using Stockley's herbal medicine interaction companion. Forty-nine case reports and two observational studies with 15 cases of ADRs were recorded. The majority of the patients were diagnosed with cardiovascular diseases (30.60%), cancer (22.45%) and renal transplants (16.32%) receiving mostly warfarin, alkylating agents and cyclosporine, respectively. HDI occurred in patients resulting in clinical ADRs with different severity. Patients may poorly respond to therapeutic agents or develop toxicity due to severe HDI, which in either scenario may increase the cost of treatment and/or lead to or prolong patient hospitalization. It is warranted to increase patient awareness of the potential interaction between herbs and prescribed medicines and their consequences to curb HDI as a potential health problem.
Collapse
Affiliation(s)
- Charles Awortwe
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa.,Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Memela Makiwane
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Christo Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| |
Collapse
|
4
|
The beneficial effects of the herbal medicine Di-huang-yin-zi (DHYZ) on patients with ischemic stroke: A Randomized, Placebo controlled clinical study. Complement Ther Med 2015; 23:591-7. [DOI: 10.1016/j.ctim.2015.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/20/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
|
5
|
Kim YJ, Lee OR, Oh JY, Jang MG, Yang DC. Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. PLANT PHYSIOLOGY 2014; 165:373-87. [PMID: 24569845 PMCID: PMC4012596 DOI: 10.1104/pp.113.222596] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 02/21/2014] [Indexed: 05/18/2023]
Abstract
Ginsenosides are glycosylated triterpenes that are considered to be important pharmaceutically active components of the ginseng (Panax ginseng 'Meyer') plant, which is known as an adaptogenic herb. However, the regulatory mechanism underlying the biosynthesis of triterpene saponin through the mevalonate pathway in ginseng remains unclear. In this study, we characterized the role of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) concerning ginsenoside biosynthesis. Through analysis of full-length complementary DNA, two forms of ginseng HMGR (PgHMGR1 and PgHMGR2) were identified as showing high sequence identity. The steady-state mRNA expression patterns of PgHMGR1 and PgHMGR2 are relatively low in seed, leaf, stem, and flower, but stronger in the petiole of seedling and root. The transcripts of PgHMGR1 were relatively constant in 3- and 6-year-old ginseng roots. However, PgHMGR2 was increased five times in the 6-year-old ginseng roots compared with the 3-year-old ginseng roots, which indicates that HMGRs have constant and specific roles in the accumulation of ginsenosides in roots. Competitive inhibition of HMGR by mevinolin caused a significant reduction of total ginsenoside in ginseng adventitious roots. Moreover, continuous dark exposure for 2 to 3 d increased the total ginsenosides content in 3-year-old ginseng after the dark-induced activity of PgHMGR1. These results suggest that PgHMGR1 is associated with the dark-dependent promotion of ginsenoside biosynthesis. We also observed that the PgHMGR1 can complement Arabidopsis (Arabidopsis thaliana) hmgr1-1 and that the overexpression of PgHMGR1 enhanced the production of sterols and triterpenes in Arabidopsis and ginseng. Overall, this finding suggests that ginseng HMGRs play a regulatory role in triterpene ginsenoside biosynthesis.
Collapse
|
6
|
Choi K, Yoon J, Lim HK, Ryoo S. Korean red ginseng water extract restores impaired endothelial function by inhibiting arginase activity in aged mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:95-101. [PMID: 24757370 PMCID: PMC3994309 DOI: 10.4196/kjpp.2014.18.2.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young (10±3 weeks) and aged (55±5 weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases.
Collapse
Affiliation(s)
- Kwanhoon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Jeongyeon Yoon
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea
| | - Sungwoo Ryoo
- Department of Biology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
7
|
Kim YJ, Jeon JN, Jang MG, Oh JY, Kwon WS, Jung SK, Yang DC. Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. J Ginseng Res 2013; 38:66-72. [PMID: 24558313 PMCID: PMC3915334 DOI: 10.1016/j.jgr.2013.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 11/17/2022] Open
Abstract
Panax ginseng is one of the most important medicinal plants in Asia. Triterpene saponins, known as ginsenosides, are the major pharmacological compounds in P. ginseng. The present study was conducted to evaluate the changes in ginsenoside composition according to the foliation stage of P. ginseng cultured in a hydroponic system. Among the three tested growth stages (closed, intermediate, and opened), the highest amount of total ginsenoside in the main and fine roots was in the intermediate stage. In the leaves, the highest amount of total ginsenoside was in the opened stage. The total ginsenoside content of the ginseng leaf was markedly increased in the transition from the closed to intermediate stage, and increased more slowly from the intermediate to opened leaf stage, suggesting active biosynthesis of ginsenosides in the leaf. Conversely, the total ginsenoside content of the main and fine roots decreased from the intermediate to opened leaf stage. This suggests movement of ginsenosides during foliation from the root to the leaf, or vice versa. The difference in the composition of ginsenosides between the leaf and root in each stage of foliation suggests that the ginsenoside profile is affected by foliation stage, and this profile differs in each organ of the plant. These results suggest that protopanaxadiol- and protopanaxatriol (PPT)-type ginsenosides are produced according to growth stage to meet different needs in the growth and defense of ginseng. The higher content of PPT-type ginsenosides in leaves could be related to the positive correlation between light and PPT-type ginsenosides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Deok-Chun Yang
- Corresponding author. Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Suwon 449-701, Korea.
| |
Collapse
|
8
|
Ko HM, Joo SH, Kim P, Park JH, Kim HJ, Bahn GH, Kim HY, Lee J, Han SH, Shin CY, Park SH. Effects of Korean Red Ginseng extract on tissue plasminogen activator and plasminogen activator inhibitor-1 expression in cultured rat primary astrocytes. J Ginseng Res 2013; 37:401-12. [PMID: 24235858 PMCID: PMC3825855 DOI: 10.5142/jgr.2013.37.401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/20/2013] [Accepted: 05/24/2013] [Indexed: 01/12/2023] Open
Abstract
Korean Red Ginseng (KRG) is an oriental herbal preparation obtained from Panax ginseng Meyer (Araliaceae). To expand our understanding of the action of KRG on central nervous system (CNS) function, we examined the effects of KRG on tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) expression in rat primary astrocytes. KRG extract was treated in cultured rat primary astrocytes and neuron in a concentration range of 0.1 to 1.0 mg/mL and the expression of functional tPA/PAI-1 was examined by casein zymography, Western blot and reverse transcription-polymerase chain reaction. KRG extracts increased PAI-1 expression in rat primary astrocytes in a concentration dependent manner (0.1 to 1.0 mg/mL) without affecting the expression of tPA itself. Treatment of 1.0 mg/mL KRG increased PAI-1 protein expression in rat primary astrocytes to 319.3±65.9% as compared with control. The increased PAI-1 expression mediated the overall decrease in tPA activity in rat primary astrocytes. Due to the lack of PAI-1 expression in neuron, KRG did not affect tPA activity in neuron. KRG treatment induced a concentration dependent activation of PI3K, p38, ERK1/2, and JNK in rat primary astrocytes and treatment of PI3K or MAPK inhibitors such as LY294002, U0126, SB203580, and SP600125 (10 μM each), significantly inhibited 1.0 mg/mL KRG-induced expression of PAI- 1 and down-regulation of tPA activity in rat primary astrocytes. Furthermore, compound K but not other ginsenosides such as Rb1 and Rg1 induced PAI-1 expression. KRG-induced up-regulation of PAI-1 in astrocytes may play important role in the regulation of overall tPA activity in brain, which might underlie some of the beneficial effects of KRG on CNS such as neuroprotection in ischemia and brain damaging condition as well as prevention or recovery from addiction.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Neuroscience, School of Medicine and Neuroscience Research Center, Institute SMART-IABS, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shin W, Yoon J, Oh GT, Ryoo S. Korean red ginseng inhibits arginase and contributes to endotheliumdependent vasorelaxation through endothelial nitric oxide synthase coupling. J Ginseng Res 2013; 37:64-73. [PMID: 23717158 PMCID: PMC3659627 DOI: 10.5142/jgr.2013.37.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 01/27/2023] Open
Abstract
Korean red ginseng water extract (KG-WE) has known beneficial effects on the cardiovascular system via inducting nitric oxide (NO) production in endothelium. Endothelial arginase inhibits the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion, thereby reducing NO bioavailability and contributing to vascular diseases including hypertension, aging, and atherosclerosis. In the present study, we demonstrate that KG-WE inhibits arginase activity and negatively regulates NO production and reactive oxygen species generation in endothelium. This is associated with increased dimerization of eNOS without affecting the protein expression levels of either arginase or eNOS. In a vascular tension assay, when aortas isolated from wild type mice were incubated with KG-WE, NO-dependent enhanced vasorelaxation was observed. Furthermore, KG-WE administered via by drinking water to atherogenic model mice being fed high cholesterol diet improved impaired vascular function. Taken together, these results suggest that KG-WE may exert vasoprotective effects through augmentation of NO signaling by inhibiting arginase. Therefore, KG-WE may be useful in the treatment of vascular diseases derived from endothelial dysfunction, such as atherosclerosis.
Collapse
Affiliation(s)
- Woosung Shin
- Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | |
Collapse
|
10
|
Yang H, Lee SE, Jeong SI, Park CS, Jin YH, Park YS. Up-regulation of Heme Oxygenase-1 by Korean Red Ginseng Water Extract as a Cytoprotective Effect in Human Endothelial Cells. J Ginseng Res 2013; 35:352-9. [PMID: 23717080 PMCID: PMC3659539 DOI: 10.5142/jgr.2011.35.3.352] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 01/08/2023] Open
Abstract
Korean red ginseng (KRG) is used worldwide as a popular traditional herbal medicine. KRG has shown beneficial effects on cardiovascular diseases, such as atherosclerosis, diabetes, and hypertension. Up-regulation of a cytoprotective protein, heme oxygenase (HO)-1, is considered to augment the cellular defense against various agents that may induce cytotoxic injury. In the present study, we demonstrate that KRG water extract induces HO-1 expression in human umbilical vein endothelial cells (HUVECs) and possible involvement of the anti-oxidant transcription factor nuclear factor-eythroid 2-related factor 2 (Nrf2). KRG-induced HO-1 expression was examined by western blots, reverse transcriptase polymerase chain reaction and immunofluorescence staining. Specific silencing of Nrf2 genes with Nrf2-siRNA in HUVECs abolished HO-1 expression. In addition, the HO inhibitor zinc protoporphyrin blunted the preventive effect of KRG on H2O2-induced cell death, as demonstrated by terminal transferase dUTP nick end labeling assay. Taken together, these results suggest that KRG may exert a vasculoprotective effect through Nrf2- mediated HO-1 induction in human endothelial cell by inhibition of cell death.
Collapse
Affiliation(s)
- Hana Yang
- Department of Microbiology, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Li YL, Li LT, Yu M, Wang YZ, Ge HY, Song CQ. Beneficial Effects of the Herbal Medicine Di Huang Yin Zi in Patients with Spinal Cord Injury: A Randomized, Placebo-controlled Clinical Study. J Int Med Res 2012. [PMID: 23206453 DOI: 10.1177/030006051204000510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: This study investigated the safety and therapeutic efficacy of Di Huang Yin Zi (DHYZ), a traditional Chinese decoction used to treat neurological disorders, in spinal cord injury (SCI). Methods: In this doubleblind, placebo-controlled study, patients with traumatic SCI and American Spinal Injury Association (ASIA) impairment grades B - D were randomized to receive DHYZ ( n = 30) or placebo ( n = 30) for 12 weeks. Both groups also received rehabilitation therapy during the study period. Motor and sensory function and activities of daily living (ADL) were assessed before treatment and at 4-week intervals. Results: Significantly more patients in the DHYZ group showed an improved ASIA impairment grade during the treatment period (32.1%) compared with the placebo group (10.3%), and scores for sensory and motor function and ADL at the end of the treatment period were significantly higher in the DHYZ group than in the placebo group. No serious side-effects were reported. Conclusions: DHYZ was found to improve neurological function in patients with SCI and may be an effective adjuvant therapy to enhance functional recovery.
Collapse
Affiliation(s)
- YL Li
- Second Affiliated Hospital of Shandong University, Jinan, China
| | - LT Li
- Shandong Medical College, Jinan, China
| | - M Yu
- Shandong Medical College, Jinan, China
| | - YZ Wang
- Second Affiliated Hospital of Shandong University, Jinan, China
| | - HY Ge
- Laboratory for Experimental Pain Research, Centre for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - CQ Song
- Shandong Medical College, Jinan, China
| |
Collapse
|
12
|
Herrmann F, Sporer F, Tahrani A, Wink M. Antitrypanosomal properties of Panax ginseng C. A. Meyer: new possibilities for a remarkable traditional drug. Phytother Res 2012; 27:86-98. [PMID: 22473703 DOI: 10.1002/ptr.4692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/16/2011] [Accepted: 03/02/2012] [Indexed: 01/08/2023]
Abstract
African trypanosomiasis is still a major health problem in many sub-Saharan countries in Africa. We investigated the effects of three preparations of Panax ginseng, Panax notoginseng, isolated ginsenosides, and the polyacetylene panaxynol on Trypanosoma brucei brucei and the human cancer cell line HeLa. Hexane extracts and the pure panaxynol were toxic and at the same time highly selective against T. b. brucei, whereas methanol extracts and 12 isolated ginsenosides were significantly less toxic and showed only weak selectivity. Panaxynol was cytotoxic against T. b. brucei at the concentration of 0.01 µg/mL with a selectivity index of 858, superior even to established antitrypanosomal drugs. We suggest that the inhibition of trypanothione reductase, which is only found in trypanosomes, might explain the observed selectivity. The high selectivity together with a cytotoxic concentration in the range of the bioavailability makes panaxynol and other polyacetylenes in general very promising lead compounds for the treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Florian Herrmann
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany.
| | | | | | | |
Collapse
|
13
|
Abstract
A 71-year-old man was stable on warfarin (2.25 mg daily) therapy with an international normalized ratio (INR) of 1.8-2.2 after a heart valve replacement surgery. Recently, he consumed the liquid-like herbal product called shengmai-yin (10 mL daily) against medical advice. Seven days after the daily consumption of shengmai-yin, he was admitted to the intensive care unit because of consciousness disturbance [Glasgow Coma Scale (GCS) score 7] with an INR of 5.08. Head computed topography revealed intracerebral hematoma in the left temporoparietal region. Both warfarin therapy and the herbal product were withdrawn. At the same time, therapy with intravenous vitamin K1 40 mg was started. On the second day of admission, craniectomy was performed to remove the intacerebral hematoma under general anesthesia. He remained confused and restless for 2 days, but then showed progressive recovery in the consciousness level as well as motor and verbal functions. Shengmai-yin contains herbal ingredients that can interact with warfarin. The Drug Interaction Probability Scale (DIPS) indicated that warfarin and shengmai-yin were highly probable causes of intracerebral hematoma. Patients on warfarin therapy should be discouraged from taking herbal medicines, especially preparations that are already known to have antiplatelet and antithrombotic effects.
Collapse
Affiliation(s)
- Qun Su
- Intensive Care Unit, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhong Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Jia L, Zhao Y, Liang XJ. Current evaluation of the millennium phytomedicine- ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Curr Med Chem 2010; 16:2924-42. [PMID: 19689273 DOI: 10.2174/092986709788803204] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review, a sequel to part 1 in the series, collects about 107 chemical entities separated from the roots, leaves and flower buds of Panax ginseng, quinquefolius and notoginseng, and categorizes these entities into about 18 groups based on their structural similarity. The bioactivities of these chemical entities are described. The 'Yin and Yang' theory and the fundamentals of the 'five elements' applied to the traditional Chinese medicine (TCM) are concisely introduced to help readers understand how ginseng balances the dynamic equilibrium of human physiological processes from the TCM perspectives. This paper concerns the observation and experimental investigation of biological activities of ginseng used in the TCM of past and present cultures. The current biological findings of ginseng and its medical applications are narrated and critically discussed, including 1) its antihyperglycemic effect that may benefit type II diabetics; in vitro and in vivo studies demonstrated protection of ginseng on beta-cells and obese diabetic mouse models. The related clinical trial results are stated. 2) its aphrodisiac effect and cardiovascular effect that partially attribute to ginseng's bioactivity on nitric oxide (NO); 3) its cognitive effect and neuropharmacological effect that are intensively tested in various rat models using purified ginsenosides and show a hope to treat Parkinson's disease (PD); 4) its uses as an adjuvant or immunotherapeutic agent to enhance immune activity, appetite and life quality of cancer patients during their chemotherapy and radiation. Although the apoptotic effect of ginsenosides, especially Rh2, Rg3 and Compound K, on various tumor cells has been shown via different pathways, their clinical effectiveness remains to be tested. This paper also updates the antioxidant, anti-inflammatory, anti-apoptotic and immune-stimulatory activities of ginseng, its ingredients and commercial products, as well as common side effects of ginseng mainly due to its overdose, and its pharmacokinetics.
Collapse
Affiliation(s)
- Lee Jia
- Developmental Therapeutics Program, National Cancer Institute/ NIH, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
15
|
Effect of Korean Red Ginseng on Blood Pressure and Aortic Vascular(endothelial) Histological Changes in Rats. J Ginseng Res 2008. [DOI: 10.5142/jgr.2008.32.4.324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Chen CF, Chiou WF, Zhang JT. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol Sin 2008; 29:1103-8. [PMID: 18718179 DOI: 10.1111/j.1745-7254.2008.00868.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Medical application of Panax ginseng was first found in "Shen-Nong Herbal Classic"around 200 AD Panax quinquefolium was first introduced in "Essential of Materia Medica" in 1694 in China. The most important bioactive components contained in P ginseng and P quinquefolium are ginseng saponins (GS). The contents of ginsenoside Rb1, Re, and Rd in P quinquefolium are higher than they are in P ginseng. In P ginseng, the contents of Rg1,Rb2, and Rc are higher than they are in P quinquefolium. P ginseng had a higher ratio of Rg1: Rb1, and which was lower in P quinquefolium. After steaming for several hours, the total GS will decrease. However, some ginsenosides (Rg2, 20R-Rg2, Rg3, Rh1 and Rh2) increase, while others (Rb1, Rb2, Rb3, Rc, Rd, Re, and Rg1) decrease. However, variation, especially in P quinquefolium, is high. P ginseng and P quinquefolium are general tonics and adaptogens. Rg1 and Rb1 enhance central nervous system (CNS) activities, but the effect of the latter is weaker. Thus, for the higher contents of Rg1, P ginseng is a stimulant, whereas the Rb1 contents of P quinquefolium are mainly calming to the CNS. Re, Rg1, panaxan A and B from P ginseng are good for diabetes. Re and Rg1 enhance angiogenesis, whereas Rb1, Rg3 and Rh2 inhibit it. Rh2, an antitumor agent, can be obtained from Rb1 by steaming. The content of Re in P quinquefolium are higher than in P ginseng by 3-4 times. The vasorelax, antioxidant, antihyperlipidemic, and angiogenic effects of Re are reported. Thus, for the CNS "hot," wound healing and hypoglycemic effects, P ginseng is better than P quinquefolium. For anticancer effects, P quinquefolium is better.
Collapse
Affiliation(s)
- Chieh-fu Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei,China.
| | | | | |
Collapse
|
17
|
Yoo HH, Yokozawa T, Satoh A, Kang KS, Kim HY. Effects of ginseng on the proliferation of human lung fibroblasts. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2006; 34:137-46. [PMID: 16437746 DOI: 10.1142/s0192415x06003709] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we investigated the effects of methanolic extracts of white ginseng (Panax ginseng C.A. MEYER) and two kinds of heat-treated ginseng made by steaming fresh ginseng at 100 degrees C for 3 hours (HTG-100) or 120 degrees C for 3 hours (HTG-120) on the cell growth of human fibroblasts. All of the tested ginseng extracts stimulated cell growth, although the effect of HTG-120 was weaker than that of the other extracts. However, none of the ginseng extracts exhibited any effect on the growth of old cells with a population doubling level (PDL) of 48.7. Flow cytometric analysis showed that ginseng extracts raised the population of cells in G0/G1 phase after treatment for 24 hours, but did not exert any effect after treatment for 48 hours. These results suggest that ginsengs exert their cell growth-promoting action mainly on younger cells at an early stage of the cell cycle, and that this effect is closely associated with an increase in the population of cells in the G0/G1 phase.
Collapse
Affiliation(s)
- Hye Hyun Yoo
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
18
|
Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006; 100:175-86. [PMID: 16518078 DOI: 10.1254/jphs.crj05010x] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ginseng, the root of Panax species, is a well-known herbal medicine. It has been used as a traditional medicine in China, Korea, and Japan for thousands of years and is now a popular and worldwide used natural medicine. The active ingredients of ginseng are ginsenosides which are also called ginseng saponins. Recently, there is increasing evidence in the literature on the pharmacological and physiological actions of ginseng. However, ginseng has been used primarily as a tonic to invigorate weak bodies and help the restoration of homeostasis. Current in vivo and in vitro studies have shown its beneficial effects in a wide range of pathological conditions such as cardiovascular diseases, cancer, immune deficiency, and hepatotoxicity. Moreover, recent research has suggested that some of ginseng's active ingredients also exert beneficial effects on aging, central nervous system (CNS) disorders, and neurodegenerative diseases. In general, antioxidant, anti-inflammatory, anti-apoptotic, and immune-stimulatory activities are mostly underlying the possible ginseng-mediated protective mechanisms. Next to animal studies, data from neural cell cultures contribute to the understanding of these mechanisms that involve decreasing nitric oxide (NO), scavenging of free radicals, and counteracting excitotoxicity. In this review, we focus on recently reported medicinal effects of ginseng and summarize the current knowledge of its effects on CNS disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Khaled Radad
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Egypt.
| | | | | | | |
Collapse
|
19
|
White Ginseng Saponin Upregulated the Production of -TNFTNF-α, IL-1β and NO in Primary Cultures of Mixed Glial Cells. J Ginseng Res 2004. [DOI: 10.5142/jgr.2004.28.2.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Caron MF, Hotsko AL, Robertson S, Mandybur L, Kluger J, White CM. Electrocardiographic and hemodynamic effects of Panax ginseng. Ann Pharmacother 2002; 36:758-63. [PMID: 11978148 DOI: 10.1345/aph.1a411] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To determine whether Panax ginseng ingestion can acutely or chronically alter electrocardiographic parameters: PR, QRS, QT, QTc, and RR intervals, and QT and QTc interval dispersion. Effects of P. ginseng on blood pressure and heart rate also were evaluated. METHODS This is a prospective, randomized, double-blind, placebo-controlled study of healthy adults at the University of Connecticut. Thirty subjects were randomly allocated to receive 28 days of therapy with either P. ginseng extract 200 mg or placebo. Baseline 12-lead electrocardiograms (ECGs) were obtained. Subsequent ECGs were performed following study drug ingestion at 50 minutes, 2 hours, and 5 hours on days 1 and 28. Blood pressure readings were taken with each ECG. RESULTS P. ginseng ingestion increased the QTc interval by 0.015 seconds on day 1 at 2 hours compared with the placebo group (p = 0.03). It also reduced diastolic blood pressure from 75 +/- 5 mm Hg at baseline to 70 +/- 6 mm Hg at the same time point (p = 0.02). The observed effects are not believed to be clinically significant. No other statistically significant changes were found in electrocardiographic or hemodynamic variables on days 1 or 28. CONCLUSIONS P. ginseng, at doses of 200 mg of the extract daily, increases the QTc interval and decreases diastolic blood pressure 2 hours after ingestion in healthy adults on the first day of therapy.
Collapse
Affiliation(s)
- Michael F Caron
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | |
Collapse
|