1
|
Chiappalone M, Cota VR, Carè M, Di Florio M, Beaubois R, Buccelli S, Barban F, Brofiga M, Averna A, Bonacini F, Guggenmos DJ, Bornat Y, Massobrio P, Bonifazi P, Levi T. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering. Brain Sci 2022; 12:1578. [PMID: 36421904 PMCID: PMC9688667 DOI: 10.3390/brainsci12111578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.
Collapse
Affiliation(s)
- Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Vinicius R. Cota
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marta Carè
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mattia Di Florio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Romain Beaubois
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Barban
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Francesco Bonacini
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - David J. Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Yannick Bornat
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- National Institute for Nuclear Physics (INFN), 16146 Genova, Italy
| | - Paolo Bonifazi
- IKERBASQUE, The Basque Fundation, 48009 Bilbao, Spain
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Timothée Levi
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| |
Collapse
|
2
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization of Plastic Neuronal Networks by Double-Random Coordinated Reset Stimulation. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:864859. [PMID: 36926109 PMCID: PMC10013062 DOI: 10.3389/fnetp.2022.864859] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022]
Abstract
Hypersynchrony of neuronal activity is associated with several neurological disorders, including essential tremor and Parkinson's disease (PD). Chronic high-frequency deep brain stimulation (HF DBS) is the standard of care for medically refractory PD. Symptoms may effectively be suppressed by HF DBS, but return shortly after cessation of stimulation. Coordinated reset (CR) stimulation is a theory-based stimulation technique that was designed to specifically counteract neuronal synchrony by desynchronization. During CR, phase-shifted stimuli are delivered to multiple neuronal subpopulations. Computational studies on CR stimulation of plastic neuronal networks revealed long-lasting desynchronization effects obtained by down-regulating abnormal synaptic connectivity. This way, networks are moved into attractors of stable desynchronized states such that stimulation-induced desynchronization persists after cessation of stimulation. Preclinical and clinical studies confirmed corresponding long-lasting therapeutic and desynchronizing effects in PD. As PD symptoms are associated with different pathological synchronous rhythms, stimulation-induced long-lasting desynchronization effects should favorably be robust to variations of the stimulation frequency. Recent computational studies suggested that this robustness can be improved by randomizing the timings of stimulus deliveries. We study the long-lasting effects of CR stimulation with randomized stimulus amplitudes and/or randomized stimulus timing in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity. Performing computer simulations and analytical calculations, we study long-lasting desynchronization effects of CR with and without randomization of stimulus amplitudes alone, randomization of stimulus times alone as well as the combination of both. Varying the CR stimulation frequency (with respect to the frequency of abnormal target rhythm) and the number of separately stimulated neuronal subpopulations, we reveal parameter regions and related mechanisms where the two qualitatively different randomization mechanisms improve the robustness of long-lasting desynchronization effects of CR. In particular, for clinically relevant parameter ranges double-random CR stimulation, i.e., CR stimulation with the specific combination of stimulus amplitude randomization and stimulus time randomization, may outperform regular CR stimulation with respect to long-lasting desynchronization. In addition, our results provide the first evidence that an effective reduction of the overall stimulation current by stimulus amplitude randomization may improve the frequency robustness of long-lasting therapeutic effects of brain stimulation.
Collapse
Affiliation(s)
| | | | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization Effects of Coordinated Reset Stimulation Improved by Random Jitters. Front Physiol 2021; 12:719680. [PMID: 34630142 PMCID: PMC8497886 DOI: 10.3389/fphys.2021.719680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormally strong synchronized activity is related to several neurological disorders, including essential tremor, epilepsy, and Parkinson's disease. Chronic high-frequency deep brain stimulation (HF DBS) is an established treatment for advanced Parkinson's disease. To reduce the delivered integral electrical current, novel theory-based stimulation techniques such as coordinated reset (CR) stimulation directly counteract the abnormal synchronous firing by delivering phase-shifted stimuli through multiple stimulation sites. In computational studies in neuronal networks with spike-timing-dependent plasticity (STDP), it was shown that CR stimulation down-regulates synaptic weights and drives the network into an attractor of a stable desynchronized state. This led to desynchronization effects that outlasted the stimulation. Corresponding long-lasting therapeutic effects were observed in preclinical and clinical studies. Computational studies suggest that long-lasting effects of CR stimulation depend on the adjustment of the stimulation frequency to the dominant synchronous rhythm. This may limit clinical applicability as different pathological rhythms may coexist. To increase the robustness of the long-lasting effects, we study randomized versions of CR stimulation in networks of leaky integrate-and-fire neurons with STDP. Randomization is obtained by adding random jitters to the stimulation times and by shuffling the sequence of stimulation site activations. We study the corresponding long-lasting effects using analytical calculations and computer simulations. We show that random jitters increase the robustness of long-lasting effects with respect to changes of the number of stimulation sites and the stimulation frequency. In contrast, shuffling does not increase parameter robustness of long-lasting effects. Studying the relation between acute, acute after-, and long-lasting effects of stimulation, we find that both acute after- and long-lasting effects are strongly determined by the stimulation-induced synaptic reshaping, whereas acute effects solely depend on the statistics of administered stimuli. We find that the stimulation duration is another important parameter, as effective stimulation only entails long-lasting effects after a sufficient stimulation duration. Our results show that long-lasting therapeutic effects of CR stimulation with random jitters are more robust than those of regular CR stimulation. This might reduce the parameter adjustment time in future clinical trials and make CR with random jitters more suitable for treating brain disorders with abnormal synchronization in multiple frequency bands.
Collapse
Affiliation(s)
- Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Kutoyants YA. On multi-step estimation of delay for SDE. BERNOULLI 2021. [DOI: 10.3150/20-bej1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization of Plastic Neural Networks by Random Reset Stimulation. Front Physiol 2021; 11:622620. [PMID: 33613303 PMCID: PMC7893102 DOI: 10.3389/fphys.2020.622620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive neuronal synchrony is a hallmark of neurological disorders such as epilepsy and Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency (HF) deep brain stimulation (DBS). However, symptoms return shortly after cessation of HF-DBS. Recently developed decoupling stimulation approaches, such as Random Reset (RR) stimulation, specifically target pathological connections to achieve long-lasting desynchronization. During RR stimulation, a temporally and spatially randomized stimulus pattern is administered. However, spatial randomization, as presented so far, may be difficult to realize in a DBS-like setup due to insufficient spatial resolution. Motivated by recently developed segmented DBS electrodes with multiple stimulation sites, we present a RR stimulation protocol that copes with the limited spatial resolution of currently available depth electrodes for DBS. Specifically, spatial randomization is realized by delivering stimuli simultaneously to L randomly selected stimulation sites out of a total of M stimulation sites, which will be called L/M-RR stimulation. We study decoupling by L/M-RR stimulation in networks of excitatory integrate-and-fire neurons with spike-timing dependent plasticity by means of theoretical and computational analysis. We find that L/M-RR stimulation yields parameter-robust decoupling and long-lasting desynchronization. Furthermore, our theory reveals that strong high-frequency stimulation is not suitable for inducing long-lasting desynchronization effects. As a consequence, low and high frequency L/M-RR stimulation affect synaptic weights in qualitatively different ways. Our simulations confirm these predictions and show that qualitative differences between low and high frequency L/M-RR stimulation are present across a wide range of stimulation parameters, rendering stimulation with intermediate frequencies most efficient. Remarkably, we find that L/M-RR stimulation does not rely on a high spatial resolution, characterized by the density of stimulation sites in a target area, corresponding to a large M. In fact, L/M-RR stimulation with low resolution performs even better at low stimulation amplitudes. Our results provide computational evidence that L/M-RR stimulation may present a way to exploit modern segmented lead electrodes for long-lasting therapeutic effects.
Collapse
Affiliation(s)
- Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
How stimulation frequency and intensity impact on the long-lasting effects of coordinated reset stimulation. PLoS Comput Biol 2018; 14:e1006113. [PMID: 29746458 PMCID: PMC5963814 DOI: 10.1371/journal.pcbi.1006113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 05/22/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
Several brain diseases are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was computationally designed to specifically counteract abnormal neuronal synchronization processes by desynchronization. In the presence of spike-timing-dependent plasticity (STDP) this may lead to a decrease of synaptic excitatory weights and ultimately to an anti-kindling, i.e. unlearning of abnormal synaptic connectivity and abnormal neuronal synchrony. The long-lasting desynchronizing impact of CR stimulation has been verified in pre-clinical and clinical proof of concept studies. However, as yet it is unclear how to optimally choose the CR stimulation frequency, i.e. the repetition rate at which the CR stimuli are delivered. This work presents the first computational study on the dependence of the acute and long-term outcome on the CR stimulation frequency in neuronal networks with STDP. For this purpose, CR stimulation was applied with Rapidly Varying Sequences (RVS) as well as with Slowly Varying Sequences (SVS) in a wide range of stimulation frequencies and intensities. Our findings demonstrate that acute desynchronization, achieved during stimulation, does not necessarily lead to long-term desynchronization after cessation of stimulation. By comparing the long-term effects of the two different CR protocols, the RVS CR stimulation turned out to be more robust against variations of the stimulation frequency. However, SVS CR stimulation can obtain stronger anti-kindling effects. We revealed specific parameter ranges that are favorable for long-term desynchronization. For instance, RVS CR stimulation at weak intensities and with stimulation frequencies in the range of the neuronal firing rates turned out to be effective and robust, in particular, if no closed loop adaptation of stimulation parameters is (technically) available. From a clinical standpoint, this may be relevant in the context of both invasive as well as non-invasive CR stimulation.
Collapse
|
7
|
Popovych OV, Xenakis MN, Tass PA. The spacing principle for unlearning abnormal neuronal synchrony. PLoS One 2015; 10:e0117205. [PMID: 25714553 PMCID: PMC4340932 DOI: 10.1371/journal.pone.0117205] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/20/2014] [Indexed: 01/14/2023] Open
Abstract
Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.e. by delivering repeated stimuli spaced by pauses as opposed to delivering a massed stimulus (in a single long stimulation session). To illustrate that the spacing principle may boost the anti-kindling effect of CR neuromodulation, in this computational study we carry this approach to extremes. To this end, we deliver spaced CR neuromodulation at particularly weak intensities which render permanently delivered CR neuromodulation ineffective. Intriguingly, spaced CR neuromodulation at these particularly weak intensities effectively induces an anti-kindling. In fact, the spacing principle enables the neuronal population to successively hop from one attractor to another one, finally approaching attractors characterized by down-regulated synaptic connectivity and synchrony. Our computational results might open up novel opportunities to effectively induce sustained desynchronization at particularly weak stimulation intensities, thereby avoiding side effects, e.g., in the case of deep brain stimulation.
Collapse
Affiliation(s)
- Oleksandr V. Popovych
- Institute of Neuroscience and Medicine—Neuromodulation, Jülich Research Center, Jülich, Germany
- * E-mail:
| | - Markos N. Xenakis
- Institute of Neuroscience and Medicine—Neuromodulation, Jülich Research Center, Jülich, Germany
| | - Peter A. Tass
- Institute of Neuroscience and Medicine—Neuromodulation, Jülich Research Center, Jülich, Germany
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Department of Neuromodulation, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Hauptmann C, Popovych O, Tass PA. Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: a modeling study. Expert Rev Med Devices 2014; 4:633-50. [PMID: 17850198 DOI: 10.1586/17434440.4.5.633] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A mathematical model of a target area for deep brain stimulation was used to investigate the effects of electrical stimulation on pathologically synchronized clusters of neurons. In total, three newly developed stimulation techniques based on multisite coordinated reset and delayed feedback were tested and compared with a high-frequency stimulation method that is currently used as a standard stimulation protocol for deep brain stimulation. By modeling both excitatory and inhibitory actions of the electrical stimulation, we revealed the desynchronization impacts of the novel stimulation techniques. This contrasts with standard high-frequency stimulation, which failed to desynchronize the target population and whose inhibitory effects blocked all neuronal activity. We also explored the demand-controlled character of the proposed methods, and demonstrated that the amount of stimulation current required was considerably smaller than that for high-frequency stimulation. These novel stimulation methods appear to be superior to standard high-frequency stimulation techniques, and we propose the methods now be used for deep brain stimulation.
Collapse
Affiliation(s)
- Christian Hauptmann
- Institute of Neuroscience and Biophysics 3 and Virtual Institute of Neuromodulation, Research Center Juelich, 52425 Juelich, Germany.
| | | | | |
Collapse
|
9
|
MONTASERI GHAZAL, ADHAMI-MIRHOSSEINI ARAS, YAZDANPANAH MOHAMMADJAVAD. A MATHEMATICAL APPROACH TO DESYNCHRONIZATION OF COUPLED OSCILLATORS: APPLICATION TO A NEURONAL ENSEMBLE. INT J BIOMATH 2013. [DOI: 10.1142/s1793524513500095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synchronization of neurons plays an important role in vision, movement and memory. However, many neurological disorders such as epilepsies, Parkinson disease and essential tremor are related to excessive synchronization of neurons. In the line of therapy, stimulations to these pathologically synchronized neurons should be capable of breaking synchrony. As the first step of designing an effective stimulation, we consider desynchronization problem of coupled limit-cycle oscillators ensemble. First, the desynchronization problem is redefined in a nonlinear output regulation framework. Then, we design an output regulator (stimulation) which forces limit-cycle oscillators to track exogenous sinusoidal references with different phases. The proposed stimulation is robust against variations of oscillators' frequencies. Mathematical analysis and simulation results reveal the efficiency of the proposed technique.
Collapse
Affiliation(s)
- GHAZAL MONTASERI
- Advanced Control Systems Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - ARAS ADHAMI-MIRHOSSEINI
- Advanced Control Systems Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - MOHAMMAD JAVAD YAZDANPANAH
- Advanced Control Systems Laboratory, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Pascual A, Modolo J, Beuter A. IS A COMPUTATIONAL MODEL USEFUL TO UNDERSTAND THE EFFECT OF DEEP BRAIN STIMULATION IN PARKINSON'S DISEASE? J Integr Neurosci 2006; 5:541-59. [PMID: 17245822 DOI: 10.1142/s021963520600132x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 11/17/2006] [Indexed: 11/18/2022] Open
Abstract
A growing number of computational models have been proposed over the last few years to help explain the therapeutic effect of deep brain stimulation (DBS) on motor disorders in Parkinson's disease (PD). However, none of these has been able to explain in a convincing manner the physiological mechanisms underlying DBS. Can these models really contribute to improving our understanding? The model by Rubin and Terman [31] represents one of the most comprehensive and biologically plausible models of DBS published recently. We examined the validity of the model, replicated its simulations and tested its robustness. While our simulations partially reproduced the results presented by Rubin and Terman [31], several issues were raised including the high complexity of the model in its non simplified form, the lack of robustness of the model with respect to small perturbations, the nonrealistic representation of the thalamus and the absence of time delays. Computational models are indeed necessary, but they may not be sufficient in their current forms to explain the effect of chronic electrical stimulation on the activity of the basal ganglia (BG) network in PD.
Collapse
Affiliation(s)
- Alejandro Pascual
- Institute of Mathematics, Universities Bordeaux 1 and Bordeaux 2, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| | | | | |
Collapse
|
11
|
Popovych OV, Hauptmann C, Tass PA. Control of neuronal synchrony by nonlinear delayed feedback. BIOLOGICAL CYBERNETICS 2006; 95:69-85. [PMID: 16614837 DOI: 10.1007/s00422-006-0066-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 03/08/2006] [Indexed: 05/08/2023]
Abstract
We present nonlinear delayed feedback stimulation as a technique for effective desynchronization. This method is intriguingly robust with respect to system and stimulation parameter variations. We demonstrate its broad applicability by applying it to different generic oscillator networks as well as to a population of bursting neurons. Nonlinear delayed feedback specifically counteracts abnormal interactions and, thus, restores the natural frequencies of the individual oscillatory units. Nevertheless, nonlinear delayed feedback enables to strongly detune the macroscopic frequency of the collective oscillation. We propose nonlinear delayed feedback stimulation for the therapy of neurological diseases characterized by abnormal synchrony.
Collapse
|
12
|
Hauptmann C, Popovych O, Tass P. Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 2005. [DOI: 10.1016/j.neucom.2004.10.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|