1
|
Huang R, Xu L, Wang Y, Zhang Y, Lin B, Lin Z, Li J, Li X. Efficient fabrication of stretching hydrogels with programmable strain gradients as cell sheet delivery vehicles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112415. [PMID: 34579924 DOI: 10.1016/j.msec.2021.112415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023]
Abstract
Fabricating functional cell sheets with excellent mechanical strength for tissue regeneration remains challenging. Therefore, we devised a novel 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide/N-hydroxy-succinimide crosslinked hydrogel carrier composed of gelatin (Ge) and beta-cyclodextrin (β-CD) that promoted the adhesion and proliferation of keratinocytes (Kcs) compared with those cultured on a Ge hydrogel due to significantly higher pore size, porosity, and stiffness, as confirmed using field emission scanning electron microscopy (FE-SEM) and shear wave elastography (SWE). Upon exposure to a programmable gradient microenvironment, cells displayed a stress/strain-dependent spatial-temporal distribution of extended cellular phenotypes and cytoskeletons. The promoted proliferation of Kcs and the increased retention of the undifferentiated cell phenotype on Ge-β-CD composite hydrogels under a 15% strain led to the accelerated detachment of cell sheets with retained cell-cell junctions. Moreover, the stretch-triggered upregulated expression of phosphorylated yes-associated protein (YAP) 1 suggested that this effect might be associated with the mechanical stimulation-induced activation of the YAP pathway.
Collapse
Affiliation(s)
- Rong Huang
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Lirong Xu
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Yan Wang
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Yuheng Zhang
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Bin Lin
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Zhixiao Lin
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Jinqing Li
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
| | - Xueyong Li
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
2
|
Gholipourmalekabadi M, Farhadihosseinabadi B, Faraji M, Nourani MR. How preparation and preservation procedures affect the properties of amniotic membrane? How safe are the procedures? Burns 2019; 46:1254-1271. [PMID: 31445711 DOI: 10.1016/j.burns.2019.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
Human amniotic membrane (AM) has been widely used for tissue engineering and regenerative medicine applications. AM has many favorable characteristics such as high biocompatibility, antibacterial activity, anti-scarring property, immunomodulatory effects, anti-cancer behavior and contains several growth factors that make it an excellent natural candidate for wound healing. To date, various methods have been developed to prepare, preserve, cross-link and sterilize the AM. These methods remarkably affect the morphological, physico-chemical and biological properties of AM. Optimization of an effective and safe method for preparation and preservation of AM for a specific application is critical. In this review, the isolation, different methods of preparation, preservation, cross-linking and sterilization as well as their effects on properties of AM are well discussed. For each section, at least one effective and safe protocol is described in detail.
Collapse
Affiliation(s)
- Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences, Tehran, Iran
| | - Behrouz Farhadihosseinabadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Faraji
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Heinemann C, Heinemann S, Rößler S, Kruppke B, Wiesmann HP, Hanke T. Organically modified hydroxyapatite (ormoHAP) nanospheres stimulate the differentiation of osteoblast and osteoclast precursors: a co-culture study. ACTA ACUST UNITED AC 2019; 14:035015. [PMID: 30870824 DOI: 10.1088/1748-605x/ab0fad] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Isolated nanospheres consisting of organically modified hydroxyapatite (ormoHAP), prepared by an electric field-assisted ion double migration process, were embedded in foamed gelatin to form a composite scaffold. Degradation rates have been demonstrated to correlate with the crosslinking degree (40%, 80%) as well as with the mineral content of the scaffolds (0%, 20%, 40%). A human co-culture model of osteoblasts and osteoclasts, derived from bone marrow stromal cells and monocytes, respectively, without external addition of the factors RANKL and M-CSF, was run for up to 42 d in order to characterize the action of the ormoHAP-gelatin scaffolds on the co-culture. Examination was performed by quantitative biochemical methods (DNA, LDH, ALP, TRAP5b), gene expression analysis (ALP, BSP II, RANKL, IL-6, VTNR, CTSK, TRAP, OSCAR, CALCR) and confocal laser scanning microscopy (cell nuclei, actin, CD68, TRAP). Results confirm that ormoHAP embedded in the gelatin matrix enhanced TRAP 5b activity. As a feedback, ALP activity and gene expression of BSP II of osteoblasts increased. Finally, a sequence of cell cross-talk actions is suggested, which can explain the behavior of the formed vital co-culture and moreover the influence of the presence and concentration of ormoHAP.
Collapse
|
4
|
Way DV, Nele M, Pinto JC. Preparation of gelatin beads treated with glucose and glycerol. POLIMEROS 2018. [DOI: 10.1590/0104-1428.04317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Márcio Nele
- Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
5
|
Way DV, Nele M, Pinto JC. Production of doxycycline-loaded gelatin microspheres through thermal treatment in inverse suspensions. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Débora Vieira Way
- Programa de Engenharia Química/COPPE - Universidade Federal do Rio de Janeiro; Cidade Universitária; CP:68502, Rio de Janeiro RJ 21941-972 Brazil
| | - Márcio Nele
- Departamento de Engenharia Química/Escola de Química - Universidade Federal do Rio de Janeiro; Cidade Universitária; CP:68502, Rio de Janeiro RJ 21941-909 Brazil
| | - José Carlos Pinto
- Programa de Engenharia Química/COPPE - Universidade Federal do Rio de Janeiro; Cidade Universitária; CP:68502, Rio de Janeiro RJ 21941-972 Brazil
| |
Collapse
|
6
|
Lai JY. Hyaluronic acid concentration-mediated changes in structure and function of porous carriers for corneal endothelial cell sheet delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:411-419. [PMID: 26652391 DOI: 10.1016/j.msec.2015.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/27/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023]
Abstract
In this study, the effects of hyaluronic acid (HA) concentrations (0.05-1.25wt.%) on the properties of porous carriers for corneal endothelial tissue engineering were investigated. The pore size and porosity gradually increased with decreasing solid content. However, at relatively low HA concentration (i.e., 0.05wt.%), the material samples contained small interior pores and a dense surface skin layer, probably due to no gas bubble effect on the stirring processing of porous microstructures of freeze-dried polysaccharide hydrogels. The carriers prepared from 0.25wt.% HA solution had the highest freezable water content and oxygen and glucose permeability among the samples evaluated. Results of cell viability assays and quantitative real-time reverse transcription polymerase chain reaction analyses showed that the HA concentration-related alteration of porous microstructure dictates the compatibility of biopolymer carriers with corneal endothelial cell (CEC) cultures. In vivo studies demonstrated that the CEC sheet/HA carrier construct implants are therapeutically efficacious in the reconstruction of endothelial scrape-wounded corneas. It is concluded that the polysaccharide concentration is the major factor for affecting the processing of carriers and their structure and function. Porous hydrogels prepared from 0.25wt.% HA solution are capable of delivering bioengineered CEC sheets to the posterior surface of cornea.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China; Biomedical Engineering Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China; Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan 33305, Republic of China.
| |
Collapse
|
7
|
Lai JY, Cheng HY, Ma DHK. Investigation of Overrun-Processed Porous Hyaluronic Acid Carriers in Corneal Endothelial Tissue Engineering. PLoS One 2015; 10:e0136067. [PMID: 26296087 PMCID: PMC4546624 DOI: 10.1371/journal.pone.0136067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022] Open
Abstract
Hyaluronic acid (HA) is a linear polysaccharide naturally found in the eye and therefore is one of the most promising biomaterials for corneal endothelial regenerative medicine. This study reports, for the first time, the development of overrun-processed porous HA hydrogels for corneal endothelial cell (CEC) sheet transplantation and tissue engineering applications. The hydrogel carriers were characterized to examine their structures and functions. Evaluations of carbodiimide cross-linked air-dried and freeze-dried HA samples were conducted simultaneously for comparison. The results indicated that during the fabrication of freeze-dried HA discs, a technique of introducing gas bubbles in the aqueous biopolymer solutions can be used to enlarge pore structure and prevent dense surface skin formation. Among all the groups studied, the overrun-processed porous HA carriers show the greatest biological stability, the highest freezable water content and glucose permeability, and the minimized adverse effects on ionic pump function of rabbit CECs. After transfer and attachment of bioengineered CEC sheets to the overrun-processed HA hydrogel carriers, the therapeutic efficacy of cell/biopolymer constructs was tested using a rabbit model with corneal endothelial dysfunction. Clinical observations including slit-lamp biomicroscopy, specular microscopy, and corneal thickness measurements showed that the construct implants can regenerate corneal endothelium and restore corneal transparency at 4 weeks postoperatively. Our findings suggest that cell sheet transplantation using overrun-processed porous HA hydrogels offers a new way to reconstruct the posterior corneal surface and improve endothelial tissue function.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, 33302, Republic of China
- Biomedical Engineering Research Center, Chang Gung University, Taoyuan, Taiwan, 33302, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, 33302, Republic of China
- * E-mail:
| | - Hsiao-Yun Cheng
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, 33302, Republic of China
| | - David Hui-Kang Ma
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, 33305, Republic of China
- Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, 33302, Republic of China
| |
Collapse
|
8
|
Lai JY. Carbodiimide cross-linking of amniotic membranes in the presence of amino acid bridges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:28-36. [DOI: 10.1016/j.msec.2015.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/02/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
9
|
Lai JY, Luo LJ. Effect of riboflavin concentration on the development of photo-cross-linked amniotic membranes for cultivation of limbal epithelial cells. RSC Adv 2015. [DOI: 10.1039/c4ra11980k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Riboflavin concentration is critical to tailor the cross-linking degree of the collagen network and thus the nanostructure of photo-cross-linked amniotic membrane for cultivation of limbal stem cells.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Taiwan
| | - Li-Jyuan Luo
- Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Taiwan
| |
Collapse
|
10
|
Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:313-9. [DOI: 10.1016/j.msec.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/27/2014] [Accepted: 09/01/2014] [Indexed: 11/15/2022]
|
11
|
Biofunctionalization of gelatin microcarrier with oxidized hyaluronic acid for corneal keratocyte cultivation. Colloids Surf B Biointerfaces 2014; 122:277-286. [DOI: 10.1016/j.colsurfb.2014.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/22/2022]
|
12
|
Lai JY. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:334-40. [DOI: 10.1016/j.msec.2013.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/08/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
|
13
|
Lai JY. Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydr Polym 2014; 101:203-12. [DOI: 10.1016/j.carbpol.2013.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
|
14
|
Lai JY. Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2201-2210. [PMID: 23677435 DOI: 10.1007/s10856-013-4961-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Gelatin is a protein molecule that displays bioaffinity and provides a template to guide retinal pigment epithelial (RPE) cell organization and growth. We have recently demonstrated that the carbodiimide cross-linked gelatin membranes can be used as retinal sheet carriers. The purpose of this work was to further determine the role of solvent composition in the tissue delivery performance of chemically modified biopolymer matrices. The gelatin molecules were treated with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in the presence of binary ethanol/water mixtures with varying ethanol concentrations (70-95 vol%) to obtain the carriers with different cross-linking efficiencies and mechanical properties. Results of melting point measurements and in vitro degradation tests showed that when the cross-linking index reached a high level of around 45 %, the EDC cross-linked gelatin materials have sufficient thermal stability and resistance to enzymatic degradation, indicating their suitability for the development of carriers for retinal sheet delivery. Irrespective of the solvent composition, the chemically modified gelatin samples are compatible toward human RPE cells without causing toxicity and inflammation. In particular, the membrane carriers prepared by the cross-linking in the presence of solvent mixtures containing 80-90 vol% of ethanol have no impact on the proliferative capacity of ARPE-19 cultures and possess good efficiency in transferring and encapsulating the retinal tissues. It is concluded that, except for cell viability and pro-inflammatory cytokine expression, the retinal sheet delivery performance strongly depends on the solvent composition for EDC cross-linking of gelatin molecules.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan, Republic of China.
| |
Collapse
|
15
|
Lai JY, Ma DHK, Lai MH, Li YT, Chang RJ, Chen LM. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS One 2013; 8:e54058. [PMID: 23382866 PMCID: PMC3559727 DOI: 10.1371/journal.pone.0054058] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/05/2012] [Indexed: 01/15/2023] Open
Abstract
Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC) monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5–15 wt%) on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young’s modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5–10 wt%, the hydrogels have high freezable water content (0.89–0.93) and concentration of permeated glucose (591.3–615.5 µg/ml). These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer concentration effects.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
16
|
Lai JY. Corneal stromal cell growth on gelatin/chondroitin sulfate scaffolds modified at different NHS/EDC molar ratios. Int J Mol Sci 2013; 14:2036-55. [PMID: 23337203 PMCID: PMC3565364 DOI: 10.3390/ijms14012036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/13/2012] [Accepted: 01/05/2013] [Indexed: 11/16/2022] Open
Abstract
A nanoscale modification strategy that can incorporate chondroitin sulfate (CS) into the cross-linked porous gelatin materials has previously been proposed to give superior performance for designed corneal keratocyte scaffolds. The purpose of this work was to further investigate the influence of carbodiimide chemistry on the characteristics and biofunctionalities of gelatin/CS scaffolds treated with varying N-hydroxysuccinimide (NHS)/1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) molar ratios (0-1) at a constant EDC concentration of 10 mM. Results of Fourier transform infrared spectroscopy and dimethylmethylene blue assays consistently indicated that when the NHS to EDC molar ratio exceeds a critical level (i.e., 0.5), the efficiency of carbodiimide-mediated biomaterial modification is significantly reduced. With the optimum NHS/EDC molar ratio of 0.5, chemical treatment could achieve relatively high CS content in the gelatin scaffolds, thereby enhancing the water content, glucose permeation, and fibronectin adsorption. Live/Dead assays and interleukin-6 mRNA expression analyses demonstrated that all the test samples have good cytocompatibility without causing toxicity and inflammation. In the molar ratio range of NHS to EDC from 0 to 0.5, the cell adhesion ratio and proliferation activity on the chemically modified samples significantly increased, which is attributed to the increasing CS content. Additionally, the materials with highest CS content (0.143 ± 0.007 nmol/10 mg scaffold) showed the greatest stimulatory effect on the biosynthetic activity of cultivated keratocytes. These findings suggest that a positive correlation is noticed between the NHS to EDC molar ratio and the CS content in the biopolymer matrices, thereby greatly affecting the corneal stromal cell growth.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
17
|
Lai JY. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial. MATERIALS 2012. [PMCID: PMC5449031 DOI: 10.3390/ma5101986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyaluronic acid (HA) is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5) at a constant 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v), the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; E-Mail: ; Tel.: +886-3-211-8800, ext. 3598; Fax: +886-3-211-8668
- Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|