1
|
Daszkiewicz K, Rucka M, Czuraj K, Andrzejewska A, Łuczkiewicz P. Effect of lag screw on stability of first metatarsophalangeal joint arthrodesis with medial plate. PeerJ 2024; 12:e16901. [PMID: 38436033 PMCID: PMC10908269 DOI: 10.7717/peerj.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Background First metatarsophalangeal joint (MTP-1) arthrodesis is a commonly performed procedure in the treatment of disorders of the great toe. Since the incidence of revision after MTP-1 joint arthrodesis is not insignificant, a medial approach with a medially positioned locking plate has been proposed as a new technique. The aim of the study was to investigate the effect of the application of a lag screw on the stability and strength of first metatarsophalangeal joint arthrodesis with medial plate. Methods The bending tests in a testing machine were performed for models of the first metatarsal bone and the proximal phalanx printed on a 3D printer from polylactide material. The bones were joined using the locking titanium plate and six locking screws. The specimens were divided into three groups of seven each: medial plate and no lag screw, medial plate with a lag screw, dorsal plate with a lag screw. The tests were carried out quasi-static until the samples failure. Results The addition of the lag screw to the medial plate significantly increased flexural stiffness (41.45 N/mm vs 23.84 N/mm, p = 0.002), which was lower than that of the dorsal plate with a lag screw (81.29 N/mm, p < 0.001). The similar maximum force greater than 700 N (p > 0.50) and the relative bone displacements lower than 0.5 mm for a force of 50 N were obtained for all fixation techniques. Conclusions The lag screw significantly increased the shear stiffness in particular and reduced relative transverse displacements to the level that should not delay the healing process for the full load of the MTP-1 joint arthrodesis with the medial plate. It is recommended to use the locking screws with a larger cross-sectional area of the head to minimize rotation of the medial plate relative to the metatarsal bone.
Collapse
Affiliation(s)
- Karol Daszkiewicz
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Magdalena Rucka
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Angela Andrzejewska
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Łuczkiewicz
- Pomeranian Reumatology Center, Sopot, Poland
- Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
2
|
Kalra M, McGregor ME, McLachlin SD, Cronin DS, Chandrashekar N. Characterizing In-Situ Metatarsal Fracture Risk During Simulated Workplace Impact Loading. J Biomech Eng 2023; 145:1156058. [PMID: 36628995 DOI: 10.1115/1.4056652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Metatarsal fractures represent the most common traumatic foot injury; however, metatarsal fracture thresholds remain poorly characterized, which affects performance targets for protective footwear. This experimental study investigated impact energies, forces, and deformations to characterize metatarsal fracture risk for simulated in situ workplace impact loading. A drop tower setup conforming to ASTM specifications for testing impact resistance of metatarsal protective footwear applied a target impact load (22-55 J) to 10 cadaveric feet. Prior to impact, each foot was axially loaded through the tibia with a specimen-specific bodyweight load to replicate a natural weight-bearing stance. Successive iterations of impact tests were performed until a fracture was observed with X-ray imaging. Descriptive statistics were computed for force, deformation, and impact energy. Correlational analysis was conducted on donor age, BMI, deformation, force, and impact energy. A survival analysis was used to generate injury risk curves (IRC) using impact energy and force. All 10 specimens fractured with the second metatarsal being the most common fracture location. The mean peak energy, force, and deformation during fracture were 46.6 J, 4640 N, 28.9 mm, respectively. Survival analyses revealed a 50% fracture probability was associated with 35.8 J and 3562 N of impact. Foot deformation was not significantly correlated (p = 0.47) with impact force, thus deformation is not recommended to predict metatarsal fracture risk. The results from this study can be used to improve test standards for metatarsal protection, provide performance targets for protective footwear developers, and demonstrate a methodological framework for future metatarsal fracture research.
Collapse
Affiliation(s)
- Mayank Kalra
- Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2 L 3G1, Canada
| | - Martine E McGregor
- Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2 L 3G1, Canada
| | - Stewart D McLachlin
- Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2 L 3G1, Canada
| | - Duane S Cronin
- Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2 L 3G1, Canada
| | - Naveen Chandrashekar
- Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2 L 3G1, Canada
| |
Collapse
|
3
|
Coşkun Z, Çelik T, Kişioğlu Y. Metatarsal bone model production using 3D printing and comparison of material properties with results obtained from CT-based modeling and real bone. Proc Inst Mech Eng H 2023; 237:481-488. [PMID: 36855779 DOI: 10.1177/09544119231156829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Using a real bone is very important to find correct results for the biomechanical studies. However, it is very difficult to find the real bone and sometimes artificial bone models can be preferred instead of real bone. The aim of this study is to obtain an easy-to-manufacture, easy-to-customize and inexpensive method the artificial first metatarsal bone model that is similar material properties with the real bone. 3D printer technology was used to produce the artificial bone model. First metatarsal bone was modeled using MIMICS software to produce and determined the mechanical properties. The bone mechanical properties were calculated via MIMICS software using computer tomography images. 3D bone models were produced in different infill density and infill pattern to determine the real bone mechanical properties using 3D printer. The infill density of the bone model was adjusted as 20%, 40%, and 60%. Five different infill pattern types were used as grid, cubic, triangle, trihexagon, and gyroid. The produced models were subjected to torsional test and the elasticity modulus of all models were obtained. The results of the elasticity modulus of all produced (artificial) and modeled (calculated) bone were compared and the optimum bone model was obtained. The optimum infill density and infill pattern was determined as 40% and trihexagon, respectively.
Collapse
Affiliation(s)
- Zeliha Coşkun
- Faculty of Technology, Biomedical Engineering Department, Kocaeli University, Kocaeli, Turkey
| | - Talip Çelik
- Faculty of Technology, Biomedical Engineering Department, Kocaeli University, Kocaeli, Turkey
| | - Yasin Kişioğlu
- Faculty of Technology, Biomedical Engineering Department, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
4
|
Kalra M, Bahensky R, McLachlin SD, Cronin DS, Chandrashekar N. In-Situ Fracture Tolerance of the Metatarsals During Quasi-Static Compressive Loading of the Human Foot. J Biomech Eng 2022; 144:1121695. [PMID: 34635924 DOI: 10.1115/1.4052685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/08/2022]
Abstract
Accidental foot injuries including metatarsal fractures commonly result from compressive loading. The ability of personal protective equipment to prevent these traumatic injuries depends on the understanding of metatarsal fracture tolerance. However, the in situ fracture tolerance of the metatarsals under direct compressive loading to the foot's dorsal surface remains unexplored, even though the metatarsals are the most commonly fractured bones in the foot. The goal of this study was to quantify the in situ fracture tolerance of the metatarsals under simulated quasi-static compressive loading. Fresh-frozen cadaveric feet (n = 10) were mounted into a testing apparatus to replicate a natural stance and loaded at the midmetatarsals with a cylindrical bar to simulate a crushing-type injury. A 900 N compressive force was initially applied, followed by 225 N successive load increments. Specimens were examined using X-ray imaging between load increments to assess for the presence of metatarsal fractures. Descriptive statistics were conducted for metatarsal fracture force and deformation. Pearson correlation tests were used to quantify the correlation between fracture force with age and body mass index (BMI). The force and deformation at fracture were 1861 ± 642 N (mean ± standard deviation) and 22.6 ± 3.4 mm, respectively. Fracture force was correlated with donor BMI (r = 0.90). Every fractured specimen experienced a transverse fracture in the second metatarsal. New biomechanical data from this study further quantify the metatarsal fracture risk under compressive loading and will help to improve the development and testing of improved personal protective equipment for the foot to avoid catastrophic injury.
Collapse
Affiliation(s)
- Mayank Kalra
- Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Robert Bahensky
- Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Stewart D McLachlin
- Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Duane S Cronin
- Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Naveen Chandrashekar
- Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
5
|
REN LI, WANG ZHE, HUANG LINGWEI, YANG PENGFEI, SHANG PENG. TECHNOLOGIES FOR STRAIN ASSESSMENT FROM WHOLE BONE TO MINERALIZED OSTEOID LEVEL: A CRITICAL REVIEW. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone has distinctive structures and mechanical properties at the whole bone, perilacunar and mineralized osteoid levels. A systematic understanding of bone strain magnitudes at different anatomical levels and their internal interactions is the prerequisite to advances in bone mechanobiology. However, due to the intrinsic shortcomings of the strain-measuring technologies, the systematic assessment of bone strain at different anatomical levels under physiological conditions and a deep understanding of their internal interactions are still restricted. To promote technological advances and provide systematic and valuable information for mechanical engineers and bone biomechanical researchers, the most useful methods for measuring bone strain at different anatomical levels are demonstrated in this review, and suggestions for the future development of the technologies and their potential integrated applications are proposed.
Collapse
Affiliation(s)
- LI REN
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - ZHE WANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - LINGWEI HUANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENGFEI YANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENG SHANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| |
Collapse
|
6
|
NIU WENXIN, WANG LEJUN, ZHU RUI, LI BING. A THREE-DIMENSIONAL MORPOLOGICAL MEASUREMENT AND IN VITRO BIOMECHANICAL STUDY OF METATARSALS. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stress fracture of the metatarsal (MT) is often reported clinically. This study was aimed to measure and compare the three-dimensional (3D) morphological structure of five MTs, and investigate the in vitro biomechanics of five MTs under simulated stance phase. A total of seven foot-ankle samples of human cadavers were collected for this experiment. All samples were CT-scanned and 3D re-constructed for digital measurements. To simulate the stance phase, each sample was vertically loaded with 700-N through a material testing machine. The 3D-reconstruction-based measurement showed significant differences of the shaft length, vertical height, and inclination angle between the second MT and four others. Experimental strain measurements at dorsal MTs along the principal axis are all compressive. The values are respectively [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] micro-strain from the first to fifth MTs. This study proposed a new load condition of plantar-flexed simply supported beam to describe the MT loading mechanism. The second and third MTs have higher risk of stress fracture due to combined effects of inhomogeneous load distribution, unfavorable geometry and structure, and limited joint motion. This finding would be helpful for design of protective equipment.
Collapse
Affiliation(s)
- WENXIN NIU
- Yang Zhi Rehabilitation Hospital Tongji University School of Medicine Shanghai 201619, P. R. China
| | - LEJUN WANG
- Sport and Health Research Center Physical Education Department, Tongji University Shanghai 200092, P. R. China
| | - RUI ZHU
- Department of Orthopedics, Tongji Hospital Tongji University School of Medicine, Shanghai Shanghai 200065, P. R. China
| | - BING LI
- Department of Orthopedics, Tongji Hospital Tongji University School of Medicine, Shanghai Shanghai 200065, P. R. China
| |
Collapse
|