Wang L. Deep Learning Techniques to Diagnose Lung Cancer.
Cancers (Basel) 2022;
14:5569. [PMID:
36428662 PMCID:
PMC9688236 DOI:
10.3390/cancers14225569]
[Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Medical imaging tools are essential in early-stage lung cancer diagnostics and the monitoring of lung cancer during treatment. Various medical imaging modalities, such as chest X-ray, magnetic resonance imaging, positron emission tomography, computed tomography, and molecular imaging techniques, have been extensively studied for lung cancer detection. These techniques have some limitations, including not classifying cancer images automatically, which is unsuitable for patients with other pathologies. It is urgently necessary to develop a sensitive and accurate approach to the early diagnosis of lung cancer. Deep learning is one of the fastest-growing topics in medical imaging, with rapidly emerging applications spanning medical image-based and textural data modalities. With the help of deep learning-based medical imaging tools, clinicians can detect and classify lung nodules more accurately and quickly. This paper presents the recent development of deep learning-based imaging techniques for early lung cancer detection.
Collapse