1
|
Al-Asiri WY, Al-Sheddi ES, Farshori NN, Al-Oqail MM, Al-Massarani SM, Malik T, Ahmad J, Al-Khedhairy AA, Siddiqui MA. Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells. Cell Biochem Funct 2024; 42:e4113. [PMID: 39223765 DOI: 10.1002/cbf.4113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Due to their exceptional physicochemical features, green synthesized silver nanoparticles (AgNPs) have been of considerable interest in cancer treatment. In the present study, for the first time, we aimed to green synthesize AgNPs from Euphorbia retusa and explore their anticancer potential on human breast cancer (MCF-7) cells. First, the green synthesized AgNPs (EU-AgNPs) were well characterized by UV-visible spectroscopy, Fourier transmission infrared (FTIR) spectrum, XRD, scanning and transmission electron microscopy (SEM and TEM), and EDX techniques. The characterization data exhibited that EU-AgNPs were spherical in shape and crystalline in nature with an average size of 17.8 nm. FTIR results established the presence of active metabolites in EU-AgNPs. Second, the anticancer effect of EU-AgNPs was evaluated against MCF-7 cells by MTT and neutral red uptake (NRU) assays. Moreover, morphological changes, ROS production, MMP, and apoptotic marker genes were also studied upon exposure to cytotoxic doses of EU-AgNPs. Our results showed that EU-AgNPs induce cytotoxicity in a concentration-dependent manner, with an IC50 value of 40 μg/mL. Morphological changes in MCF-7 cells exposed to EU-AgNPs also confirm their cytotoxic effects. Increased ROS and decreased MMP levels revealed that EU-AgNPs induced oxidative stress and mitochondrial membrane dysfunction. Moreover, ROS-mediated apoptosis was confirmed by elevated levels of proapoptotic marker genes (p53, Bax, caspase-3, and caspase-9) and reduced levels of an antiapoptotic gene (Bcl-2). Altogether, these findings suggested that EU-AgNPs could induce potential anticancer effects through ROS-mediated apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Wajd Y Al-Asiri
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaza M Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Maqsood A Siddiqui
- Division of Research and Development, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, Danquah MK, Rodrigues J. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:809-831. [PMID: 35070207 PMCID: PMC8760111 DOI: 10.1007/s40097-021-00465-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023]
Abstract
Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | | | - Yiik Siang Hii
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Yen San Chan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Caleb Acquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403 USA
| | - Michael K. Danquah
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an, 710072 China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an, 710072 China
| |
Collapse
|
3
|
Lashin I, Fouda A, Gobouri AA, Azab E, Mohammedsaleh ZM, Makharita RR. Antimicrobial and In Vitro Cytotoxic Efficacy of Biogenic Silver Nanoparticles (Ag-NPs) Fabricated by Callus Extract of Solanum incanum L. Biomolecules 2021; 11:341. [PMID: 33668378 PMCID: PMC7996206 DOI: 10.3390/biom11030341] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The in vitro callus induction of Solanum incanum L. was executed on MS medium supplemented with different concentrations of auxin and cytokinin utilizing petioles and explants of leaves. The highest significant fresh weights from petioles and leaf explants were 4.68 and 5.13 g/jar for the medium supplemented with1.0 mg L-1 BA and 1.0 mg L-1 2,4-D. The callus extract of the leaves was used for the green synthesis of silver nanoparticles (Ag-NPs). Analytical methods used for Ag-NPs characterization were UV-vis spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Transmission Electron Microscopy (TEM). Spherical, crystallographic Ag-NPs with sizes ranging from 15 to 60nm were successfully formed. The FT-IR spectra exhibited the role of the metabolites involved in callus extract in reducing and capping Ag-NPs. The biological activities of Ag-NPs were dose-dependent. The MIC value for Staphylococcus aureus, Bacillus subtilis, and Escherichia coli was 12.5 µg mL-1, while it was 6.25 µg mL-1 for Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans. The highest inhibition of phytopathogenic fungi Alternaria alternata, Fusarium oxysporum, Aspergillus niger, and Pythium ultimum was 76.3 ± 3.7, 88.9 ± 4.1, 67.8 ± 2.1, and 76.4 ± 1.0%, respectively at 200 µg mL-1. Moreover, green synthesized Ag-NPs showed cytotoxic efficacy against cancerous cell lines HepG2, MCF-7 and normal Vero cell line with IC50 values of 21.76 ± 0.56, 50.19 ± 1.71, and 129.9 ± 0.94 µg mL-1, respectively.
Collapse
Affiliation(s)
- Islam Lashin
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
- Department of Biology, Faculty of Science and Arts, Al-Mandaq Al-Baha University, Al-Baha 1988, Saudi Arabia
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rabab R. Makharita
- Biology Department, Faculty of Science and Arts, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Aref MS, Salem SS. Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101689] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|