1
|
Laudage T, Hüsing T, Rühmann B, Beer B, Schmermund L, Sieber V. N-substituted pyrrole carboxylic acid derivatives from 3,4-dihydroxyketons. CHEMSUSCHEM 2024; 17:e202301169. [PMID: 38217857 DOI: 10.1002/cssc.202301169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Since the chemical industry is largely dependent on petrol-based feedstocks, new sources are required for a sustainable industry. Conversion of biomass to high-value compounds provides an environmentally friendly and sustainable approach, which might be a potential solution to reduce petrol-based starting materials. This also applies for N-heterocycles, which are a common structural motif in natural products, pharmaceuticals and functional polymers. The synthesis of pyrroles is a well-studied and established process. Nevertheless, most routes described are not in line with the principles of green and sustainable chemistry and employ harsh reaction conditions and harmful solvents. In this study, 3,4-dihydroxyketons are used as excellent platform chemicals for the production of N-substituted pyrrole-2-carboxylic- and pyrrole-2,5-dicarboxylic acids, as they can be prepared from glucose through the intermediate d-glucarate and converted into pyrrolic acid derivatives under mild conditions in water. The scope of this so far unknown reaction was examined using a variety of primary amines and aqueous ammonium chloride leading to pyrrolic acid derivatives with N-substituents like alkane-, alkene-, phenyl- and alcohol-groups with yields up to 20 %. The combination of both, enzymatic conversion and chemical reaction opens up new possibilities for further process development. Therefore, a continuous chemo-enzymatic system was set up by first employing an immobilized enzyme to catalyze the conversion of d-glucarate to the 3,4-dihydroxyketone, which is further converted to the pyrrolic acid derivatives by a chemical step in continuous flow.
Collapse
Affiliation(s)
- Tatjana Laudage
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Torben Hüsing
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Broder Rühmann
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Barbara Beer
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Luca Schmermund
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
- SynBiofoundry@TUM, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, 4072, Australia
| |
Collapse
|
2
|
Long B, Tan XF, Chang CR, Zhao WX, Long ZW, Ren DS, Zhang WJ. Theoretical Studies on Gas-Phase Reactions of Sulfuric Acid Catalyzed Hydrolysis of Formaldehyde and Formaldehyde with Sulfuric Acid and H2SO4···H2O Complex. J Phys Chem A 2013; 117:5106-16. [DOI: 10.1021/jp312844z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Long
- Key Laboratory of Atmospheric
Composition and Optical Radiation, Anhui Institute of Optics and Fine
Mechanics, Chinese Academy of Sciences,
Hefei 230031, China
- College
of Information Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xing-Feng Tan
- College
of Information Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Chun-Ran Chang
- School of Chemical Engineering
and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wei-Xiong Zhao
- Laboratory of Atmospheric Physico-Chemistry,
Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Zheng-Wen Long
- Laboratory for Photoelectric Technology
and Application, College of Science, Guizhou University, Guiyang 550025, China
| | - Da-Sen Ren
- College
of Information Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wei-Jun Zhang
- Key Laboratory of Atmospheric
Composition and Optical Radiation, Anhui Institute of Optics and Fine
Mechanics, Chinese Academy of Sciences,
Hefei 230031, China
- Laboratory of Atmospheric Physico-Chemistry,
Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|