1
|
Ortega-Rodriguez U, Bettinger JQ, Zou G, Falkowski VM, Lehtimaki M, Matthews AM, Biel TG, Pritts JD, Wu WW, Shen RF, Agarabi C, Rao VA, Xie H, Ju T. A chemoenzymatic method for simultaneous profiling N- and O-glycans on glycoproteins using one-pot format. CELL REPORTS METHODS 2024; 4:100834. [PMID: 39116882 PMCID: PMC11384086 DOI: 10.1016/j.crmeth.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Glycosylation is generally characterized and controlled as a critical quality attribute for therapeutic glycoproteins because glycans can impact protein drug-product efficacy, half-life, stability, and safety. Analytical procedures to characterize N-glycans are relatively well established, but the characterization of O-glycans is challenging due to the complex workflows and lack of enzymatic tools. Here, we present a simplified chemoenzymatic method to simultaneously profile N- and O-glycans from the same sample using a one-pot format by mass spectrometry (MS). N-glycans were first released by PNGase F, followed by O-glycopeptide generation by proteinase K, selective N-glycan reduction, and O-glycan release by β-elimination during permethylation of both N- and O-glycans. Glycan structural assignments and determination of N- to O-glycan ratio was obtained from the one-pot mass spectra. The streamlined, one-pot method is a reliable approach that will facilitate advanced characterizations for quality assessments of therapeutic glycoproteins.
Collapse
Affiliation(s)
- Uriel Ortega-Rodriguez
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - John Q Bettinger
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Guozhang Zou
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Vincent M Falkowski
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mari Lehtimaki
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alicia M Matthews
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Thomas G Biel
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jordan D Pritts
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Cyrus Agarabi
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - V Ashutosh Rao
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hang Xie
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
2
|
Xu J, Xu R, Jia M, Su Y, Zhu W. Metatranscriptomic analysis of colonic microbiota's functional response to different dietary fibers in growing pigs. Anim Microbiome 2021; 3:45. [PMID: 34217374 PMCID: PMC8254964 DOI: 10.1186/s42523-021-00108-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/23/2021] [Indexed: 01/30/2023] Open
Abstract
Background Dietary fibers are widely considered to be beneficial to health as they produce nutrients through gut microbial fermentation while facilitating weight management and boosting gut health. To date, the gene expression profiles of the carbohydrate active enzymes (CAZymes) that respond to different types of fibers (raw potato starch, RPS; inulin, INU; pectin, PEC) in the gut microbes of pigs are not well understood. Therefore, we investigated the functional response of colonic microbiota to different dietary fibers in pigs through metatranscriptomic analysis. Results The results showed that the microbial composition and CAZyme structure of the three experimental groups changed significantly compared with the control group (CON). Based on a comparative analysis with the control diet, RPS increased the abundance of Parabacteroides, Ruminococcus, Faecalibacterium and Alloprevotella but decreased Sutterella; INU increased the relative abundance of Fusobacterium and Rhodococcus but decreased Bacillus; and PEC increased the relative abundance of the Streptococcus and Bacteroidetes groups but decreased Clostridium, Clostridioides, Intestinibacter, Gemmiger, Muribaculum and Vibrio. The gene expression of CAZymes GH8, GH14, GH24, GH38, GT14, GT31, GT77 and GT91 downregulated but that of GH77, GH97, GT3, GT10 and GT27 upregulated in the RPS diet group; the gene expression of AA4, AA7, GH14, GH15, GH24, GH26, GH27, GH38, GH101, GT26, GT27 and GT38 downregulated in the INU group; and the gene expression of PL4, AA1, GT32, GH18, GH37, GH101 and GH112 downregulated but that of CE14, AA3, AA12, GH5, GH102 and GH103 upregulated in the PEC group. Compared with the RPS and INU groups, the composition of colonic microbiota in the PEC group exhibited more diverse changes with the variation of CAZymes and Streptococcus as the main contributor to CBM61, which greatly promoted the digestion of pectin. Conclusion The results of this exploratory study provided a comprehensive overview of the effects of different fibers on nutrient digestibility, gut microbiota and CAZymes in pig colon, which will furnish new insights into the impacts of the use of dietary fibers on animal and human health. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00108-1.
Collapse
Affiliation(s)
- Jie Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglan Jia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. .,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Latorre F, Deutschmann IM, Labarre A, Obiol A, Krabberød AK, Pelletier E, Sieracki ME, Cruaud C, Jaillon O, Massana R, Logares R. Niche adaptation promoted the evolutionary diversification of tiny ocean predators. Proc Natl Acad Sci U S A 2021; 118:e2020955118. [PMID: 34155140 PMCID: PMC8237690 DOI: 10.1073/pnas.2020955118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Unicellular eukaryotic predators play a crucial role in the functioning of the ocean ecosystem by recycling nutrients and energy that are channeled to upper trophic levels. Traditionally, these evolutionarily diverse organisms have been combined into a single functional group (heterotrophic flagellates), overlooking their organismal differences. Here, we investigated four evolutionarily related species belonging to one cosmopolitan group of uncultured marine picoeukaryotic predators: marine stramenopiles (MAST)-4 (species A, B, C, and E). Co-occurrence and distribution analyses in the global surface ocean indicated contrasting patterns in MAST-4A and C, suggesting adaptation to different temperatures. We then investigated whether these spatial distribution patterns were mirrored by MAST-4 genomic content using single-cell genomics. Analyses of 69 single cells recovered 66 to 83% of the MAST-4A/B/C/E genomes, which displayed substantial interspecies divergence. MAST-4 genomes were similar in terms of broad gene functional categories, but they differed in enzymes of ecological relevance, such as glycoside hydrolases (GHs), which are part of the food degradation machinery in MAST-4. Interestingly, MAST-4 species featuring a similar GH composition (A and C) coexcluded each other in the surface global ocean, while species with a different set of GHs (B and C) appeared to be able to coexist, suggesting further niche diversification associated with prey digestion. We propose that differential niche adaptation to temperature and prey type has promoted adaptive evolutionary diversification in MAST-4. We show that minute ocean predators from the same phylogenetic group may have different biogeography and genomic content, which needs to be accounted for to better comprehend marine food webs.
Collapse
Affiliation(s)
- Francisco Latorre
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain;
| | - Ina M Deutschmann
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Aurélie Labarre
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Aleix Obiol
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo N-0316, Norway
| | - Eric Pelletier
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology & Evolution, FR2022/Tara Oceans Global Ocean System Ecology & Evolution, 75016 Paris, France
| | - Michael E Sieracki
- Ocean Science Division, National Science Foundation, Alexandria, VA 22314
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, 91000 Evry, France
| | - Olivier Jaillon
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology & Evolution, FR2022/Tara Oceans Global Ocean System Ecology & Evolution, 75016 Paris, France
| | - Ramon Massana
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona E-08003, Spain;
| |
Collapse
|
4
|
Cheung JK, Adams V, D'Souza D, James M, Day CJ, Jennings MP, Lyras D, Rood JI. The EngCP endo α-N-acetylgalactosaminidase is a virulence factor involved in Clostridium perfringens gas gangrene infections. Int J Med Microbiol 2020; 310:151398. [PMID: 31987726 DOI: 10.1016/j.ijmm.2020.151398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/11/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022] Open
Abstract
Clostridium perfringens is the causative agent of human clostridial myonecrosis; the major toxins involved in this disease are α-toxin and perfringolysin O. The RevSR two-component regulatory system has been shown to be involved in regulating virulence in a mouse myonecrosis model. Previous microarray and RNAseq analysis of a revR mutant implied that factors other than the major toxins may play a role in virulence. The RNAseq data showed that the expression of the gene encoding the EngCP endo α-N-acetylgalactosaminidase (CPE0693) was significantly down-regulated in a revR mutant. Enzymes from this family have been identified in several Gram-positive pathogens and have been postulated to contribute to their virulence. In this study, we constructed an engCP mutant of C. perfringens and showed that it was significantly less virulent than its wild-type parent strain. Virulence was restored by complementation in trans with the wild-type engCP gene. We also demonstrated that purified EngCP was able to hydrolyse α-dystroglycan derived from C2C12 mouse myotubes. However, EngCP had little effect on membrane permeability in mice, suggesting that EngCP may play a role other than the disruption of the structural integrity of myofibres. Glycan array analysis indicated that EngCP could recognise structures containing the monosaccharide N-acetlygalactosamine at 4C, but could recognise structures terminating in galactose, glucose and N-acetylglucosamine under conditions where EngCP was enzymatically active. In conclusion, we have obtained evidence that EngCP is required for virulence in C. perfringens and, although classical exotoxins are important for disease, we have now shown that an O-glycosidase also plays an important role in the disease process.
Collapse
Affiliation(s)
- Jackie K Cheung
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Danielle D'Souza
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Meagan James
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Australia.
| |
Collapse
|
5
|
Naumoff DG, Dedysh SN. Bacteria from Poorly Studied Phyla as a Potential Source of New Enzymes: β-Galactosidases from Planctomycetes and Verrucomicrobia. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
Naumoff DG. Hierarchical classification of glycoside hydrolases. BIOCHEMISTRY (MOSCOW) 2011; 76:622-35. [PMID: 21639842 DOI: 10.1134/s0006297911060022] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin.
Collapse
Affiliation(s)
- D G Naumoff
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, 117312, Russia.
| |
Collapse
|
11
|
Naumoff DG, Stepuschenko OO. Endo-α-1,4-polygalactosaminidases and their homologs: Structure and evolution. Mol Biol 2011. [DOI: 10.1134/s0026893311030113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Gelfand MS. Introduction: 4th International Moscow Conference on Computational Molecular Biology MCCMB'09. J Bioinform Comput Biol 2010; 8:v-vii. [PMID: 20564834 DOI: 10.1142/s0219720010004938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|