1
|
Pak VN, Sherman IA. Comprehensive approach to cancer immunotherapy - Simultaneous targeting of myeloid-derived suppressor cells and cancer cells with AFP conjugates. Crit Rev Oncol Hematol 2024; 200:104407. [PMID: 38834093 DOI: 10.1016/j.critrevonc.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
The immune system plays a pivotal role in combating diseases, including cancer, with monocytes emerging as key regulators of immune response dynamics. This article describes a novel strategy for cancer treatment centered on depleting myeloid-derived suppressor cells (MDSCs), to enhance the overall immune response while simultaneously targeting cancer cells directly. Alpha-fetoprotein (AFP) is an oncofetal protein that plays an important role in delivering nutrients to immature monocytes, embryonic, and cancer cells in a targeted manner. AFP can be repurposed, making it a vehicle for delivering toxins, rather than nutrients to kill cancer cells and deplete MDSCs in the tumor microenvironment (TME). Depleting monocytes not only stimulates the immune system but also improves the lymphocyte-to-monocyte ratio (LMR), often low in cancer patients. AFP combined with cytotoxic drugs, offers dual benefit-immune stimulation and targeted chemotherapy. Studies in xenograft models demonstrated high efficacy and safety of AFP-toxin conjugates, surpassing conventional targeted chemotherapy. Such conjugates have also been reported to provide superior efficacy and safety in cancer patients compared to chemotherapy. This approach, using AFP conjugated with toxins, either covalently or non-covalently, presents a safe and highly effective option for cancer immuno/chemotherapy.
Collapse
Affiliation(s)
- Vladimir N Pak
- Omega Alpha Pharmaceuticals Inc., 795 Pharmacy Avenue, Toronto, On, M1L 3K2 Canada
| | - Igor A Sherman
- Alpha Cancer Technologies Inc., MaRS Discovery District, South Tower 200 - 101 College St., Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
2
|
Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants (Basel) 2022; 12:antiox12010096. [PMID: 36670957 PMCID: PMC9854524 DOI: 10.3390/antiox12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins composed of 3 to 10 residues and involved in multiple cellular functions. Here, we performed a search for SLiMs that exert sequence similarity to two segments of alpha-fetoprotein (AFP), a major mammalian embryonic and cancer-associated protein. Biological activities of the peptides, LDSYQCT (AFP14-20) and EMTPVNPGV (GIP-9), have been previously confirmed under in vitro and in vivo conditions. In our study, we retrieved a vast array of proteins that contain SLiMs of interest from both prokaryotic and eukaryotic species, including viruses, bacteria, archaea, invertebrates, and vertebrates. Comprehensive Gene Ontology enrichment analysis showed that proteins from multiple functional classes, including enzymes, transcription factors, as well as those involved in signaling, cell cycle, and quality control, and ribosomal proteins were implicated in cellular adaptation to environmental stress conditions. These include response to oxidative and metabolic stress, hypoxia, DNA and RNA damage, protein degradation, as well as antimicrobial, antiviral, and immune response. Thus, our data enabled insights into the common functions of SLiMs evolutionary conserved across all taxonomic categories. These SLiMs can serve as important players in cellular adaptation to stress, which is crucial for cell functioning.
Collapse
|
3
|
Moldogazieva NT, Ostroverkhova DS, Kuzmich NN, Kadochnikov VV, Terentiev AA, Porozov YB. Elucidating Binding Sites and Affinities of ERα Agonists and Antagonists to Human Alpha-Fetoprotein by In Silico Modeling and Point Mutagenesis. Int J Mol Sci 2020; 21:ijms21030893. [PMID: 32019136 PMCID: PMC7036865 DOI: 10.3390/ijms21030893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alpha-fetoprotein (AFP) is a major embryo- and tumor-associated protein capable of binding and transporting a variety of hydrophobic ligands, including estrogens. AFP has been shown to inhibit estrogen receptor (ER)-positive tumor growth, which can be attributed to its estrogen-binding ability. Despite AFP having long been investigated, its three-dimensional (3D) structure has not been experimentally resolved and molecular mechanisms underlying AFP–ligand interaction remains obscure. In our study, we constructed a homology-based 3D model of human AFP (HAFP) with the purpose of molecular docking of ERα ligands, three agonists (17β-estradiol, estrone and diethylstilbestrol), and three antagonists (tamoxifen, afimoxifene and endoxifen) into the obtained structure. Based on the ligand-docked scoring functions, we identified three putative estrogen- and antiestrogen-binding sites with different ligand binding affinities. Two high-affinity binding sites were located (i) in a tunnel formed within HAFP subdomains IB and IIA and (ii) on the opposite side of the molecule in a groove originating from a cavity formed between domains I and III, while (iii) the third low-affinity binding site was found at the bottom of the cavity. Here, 100 ns molecular dynamics (MD) simulation allowed us to study their geometries and showed that HAFP–estrogen interactions were caused by van der Waals forces, while both hydrophobic and electrostatic interactions were almost equally involved in HAFP–antiestrogen binding. Molecular mechanics/Generalized Born surface area (MM/GBSA) rescoring method exploited for estimation of binding free energies (ΔGbind) showed that antiestrogens have higher affinities to HAFP as compared to estrogens. We performed in silico point substitutions of amino acid residues to confirm their roles in HAFP–ligand interactions and showed that Thr132, Leu138, His170, Phe172, Ser217, Gln221, His266, His316, Lys453, and Asp478 residues, along with two disulfide bonds (Cys224–Cys270 and Cys269–Cys277), have key roles in both HAFP–estrogen and HAFP–antiestrogen binding. Data obtained in our study contribute to understanding mechanisms underlying protein–ligand interactions and anticancer therapy strategies based on ERα-binding ligands.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Correspondence:
| | - Daria S. Ostroverkhova
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Bioengineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolai N. Kuzmich
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Drug Safety, I.M. Smorodintsev Research Institute of Influenza, WHO National Influenza Centre of Russia, 197376 Saint Petersburg, Russia
| | - Vladimir V. Kadochnikov
- Department of Food Biotechnology and Engineering, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 Saint-Petersburg, Russia;
| | - Alexander A. Terentiev
- Deparment of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Yuri B. Porozov
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Food Biotechnology and Engineering, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 Saint-Petersburg, Russia;
| |
Collapse
|
4
|
|
5
|
Abstract
Alpha-fetoprotein is a shuttle protein that delivers nutrients through receptor-mediated endocytosis to embryotic cells. In adults, alpha-fetoprotein can shuttle drugs into alpha-fetoprotein receptor-positive myeloid-derived suppressor, regenerating and also cancer cells. Drugs with high-binding affinity to alpha-fetoprotein can activate or deplete targeted cells. Myeloid-derived suppressor cells activation leads to immune suppression that can be used for treating autoimmune diseases. On the other hand, toxins delivered by alpha-fetoprotein can damage myeloid-derived suppressor cells and consequently unleash innate and adaptive immunity to destroy cancer cells. Innate immunity natural killers reduce cancer stem cells and metastases. The new alpha-fetoprotein drug noncovalent complexes for immunotherapy change the local immune balance and has potential in oncology, autoimmune and infectious diseases treatment, inflammation, transplantation, vaccination, etc.
Collapse
|
6
|
|
7
|
The use of α-fetoprotein for the delivery of cytotoxic payloads to cancer cells. Ther Deliv 2015; 5:885-92. [PMID: 25337646 DOI: 10.4155/tde.14.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One approach to improving the activity of anticancer drugs is to bind them to the human α-fetoprotein (HAFP) that recognizes the tumor-associated cell-surface HAFP receptor. A drug can be bound to the HAFP by covalent conjugation or within a non-covalent complex. Specially designed linkers couple cytotoxins to the HAFP and ensure the stability of the HAFP-drug conjugate in the circulation and the activation of the drug in the cancer cell. On the other hand, AFP-drug non-covalent complexes can exploit the natural role of the AFP as a nutrition delivery "shuttle". In this article we review the design of HAFP-drug conjugates and AFP-drug complexes and their potential uses.
Collapse
|
8
|
Carrillo-Vazquez JP, Correa-Basurto J, García-Machorro J, Campos-Rodríguez R, Moreau V, Rosas-Trigueros JL, Reyes-López CA, Rojas-López M, Zamorano-Carrillo A. A continuous peptide epitope reacting with pandemic influenza AH1N1 predicted by bioinformatic approaches. J Mol Recognit 2015; 28:553-64. [DOI: 10.1002/jmr.2470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/16/2014] [Accepted: 01/15/2015] [Indexed: 01/27/2023]
Affiliation(s)
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos; Escuela Superior de Medicina-IPN; Mexico, D.F. Mexico
| | - Jazmin García-Machorro
- Laboratorio de Medicina de Conservación; Escuela Superior de Medicina-IPN; Mexico, D.F. Mexico
| | | | | | - Jorge L. Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos SEPI-ESCOM-IPN; Mexico, D.F. Mexico
| | - Cesar A. Reyes-López
- Laboratorio de Bioquímica y Biofísica Computacional; Doctorado en Biotecnología ENMH-IPN; Mexico, D.F. Mexico
| | | | - Absalom Zamorano-Carrillo
- Laboratorio de Bioquímica y Biofísica Computacional; Doctorado en Biotecnología ENMH-IPN; Mexico, D.F. Mexico
| |
Collapse
|
9
|
Shen J, Zhang W, Fang H, Perkins R, Tong W, Hong H. Homology modeling, molecular docking, and molecular dynamics simulations elucidated α-fetoprotein binding modes. BMC Bioinformatics 2013; 14 Suppl 14:S6. [PMID: 24266910 PMCID: PMC3851483 DOI: 10.1186/1471-2105-14-s14-s6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background An important mechanism of endocrine activity is chemicals entering target cells via transport proteins and then interacting with hormone receptors such as the estrogen receptor (ER). α-Fetoprotein (AFP) is a major transport protein in rodent serum that can bind and sequester estrogens, thus preventing entry to the target cell and where they could otherwise induce ER-mediated endocrine activity. Recently, we reported rat AFP binding affinities for a large set of structurally diverse chemicals, including 53 binders and 72 non-binders. However, the lack of three-dimensional (3D) structures of rat AFP hinders further understanding of the structural dependence for binding. Therefore, a 3D structure of rat AFP was built using homology modeling in order to elucidate rat AFP-ligand binding modes through docking analyses and molecular dynamics (MD) simulations. Methods Homology modeling was first applied to build a 3D structure of rat AFP. Molecular docking and Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) scoring were then used to examine potential rat AFP ligand binding modes. MD simulations and free energy calculations were performed to refine models of binding modes. Results A rat AFP tertiary structure was first obtained using homology modeling and MD simulations. The rat AFP-ligand binding modes of 13 structurally diverse, representative binders were calculated using molecular docking, (MM-GBSA) ranking and MD simulations. The key residues for rat AFP-ligand binding were postulated through analyzing the binding modes. Conclusion The optimized 3D rat AFP structure and associated ligand binding modes shed light on rat AFP-ligand binding interactions that, in turn, provide a means to estimate binding affinity of unknown chemicals. Our results will assist in the evaluation of the endocrine disruption potential of chemicals.
Collapse
|
10
|
Abstract
Alpha-fetoprotein (AFP) is a major mammalian embryo-specific and tumor-associated protein that is also present in small quantities in adults at normal conditions. Discovery of the phenomenon of AFP biosynthesis in carcinogenesis by G. Abelev and Yu. Tatarinov 50 years ago, in 1963, provoked intensive studies of this protein. AFPs of some mammalian species were isolated, purified and physico-chemically and immunochemically characterized. Despite the significant success in study of AFP, its three-dimensional structure, mechanisms of receptor binding along with a structure of the receptor itself and, what is the most important, its biological role in embryo- and carcinogenesis remain still obscure. Due to difficulties linked with methodological limitations, research of AFP was to some extent extinguished by the 1990 s. However, over the last decade a growing number of investigations of AFP and its usage as a tumor-specific biomarker have been observed. This was caused by the use of new technologies, primarily, computer-based and genetic engineering approaches in studying of this very important oncodevelopmental protein. Our review summarizes efforts of different scientific groups throughout the world in studying AFP for 50 years with emphasis on detailed description of recent achievements in this field.
Collapse
|
11
|
WONG LIMSOON. A SHORT INTRODUCTION TO SOME RECENT PROGRESS IN PHYLOGENETIC NETWORK RECONSTRUCTION, GENOME MAPPING, GENE EXPRESSION ANALYSIS, MOLECULAR DYNAMIC SIMULATION, AND OTHER PROBLEMS IN BIOINFORMATICS. J Bioinform Comput Biol 2012; 10:1203002. [DOI: 10.1142/s0219720012030023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|