1
|
Dmitriev AA, Kezimana P, Rozhmina TA, Zhuchenko AA, Povkhova LV, Pushkova EN, Novakovskiy RO, Pavelek M, Vladimirov GN, Nikolaev EN, Kovaleva OA, Kostyukevich YI, Chagovets VV, Romanova EV, Snezhkina AV, Kudryavtseva AV, Krasnov GS, Melnikova NV. Genetic diversity of SAD and FAD genes responsible for the fatty acid composition in flax cultivars and lines. BMC PLANT BIOLOGY 2020; 20:301. [PMID: 33050879 PMCID: PMC7557025 DOI: 10.1186/s12870-020-02499-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is grown for fiber and seed in many countries. Flax cultivars differ in the oil composition and, depending on the ratio of fatty acids, are used in pharmaceutical, food, or paint industries. It is known that genes of SAD (stearoyl-ACP desaturase) and FAD (fatty acid desaturase) families play a key role in the synthesis of fatty acids, and some alleles of these genes are associated with a certain composition of flax oil. However, data on genetic polymorphism of these genes are still insufficient. RESULTS On the basis of the collection of the Institute for Flax (Torzhok, Russia), we formed a representative set of 84 cultivars and lines reflecting the diversity of fatty acid composition of flax oil. An approach for the determination of full-length sequences of SAD1, SAD2, FAD2A, FAD2B, FAD3A, and FAD3B genes using the Illumina platform was developed and deep sequencing of the 6 genes in 84 flax samples was performed on MiSeq. The obtained high coverage (about 400x on average) enabled accurate assessment of polymorphisms in SAD1, SAD2, FAD2A, FAD2B, FAD3A, and FAD3B genes and evaluation of cultivar/line heterogeneity. The highest level of genetic diversity was observed for FAD3A and FAD3B genes - 91 and 62 polymorphisms respectively. Correlation analysis revealed associations between particular variants in SAD and FAD genes and predominantly those fatty acids whose conversion they catalyze: SAD - stearic and oleic acids, FAD2 - oleic and linoleic acids, FAD3 - linoleic and linolenic acids. All except one low-linolenic flax cultivars/lines contained both the substitution of tryptophan to stop codon in the FAD3A gene and histidine to tyrosine substitution in the FAD3B gene, while samples with only one of these polymorphisms had medium content of linolenic acid and cultivars/lines without them were high-linolenic. CONCLUSIONS Genetic polymorphism of SAD and FAD genes was evaluated in the collection of flax cultivars and lines with diverse oil composition, and associations between particular polymorphisms and the ratio of fatty acids were revealed. The achieved results are the basis for the development of marker-assisted selection and DNA-based certification of flax cultivars.
Collapse
Affiliation(s)
- Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Parfait Kezimana
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Tatiana A Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Federal Research Center for Bast Fiber Crops, Torzhok, Russia
| | - Alexander A Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow, Russia
| | - Liubov V Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elena N Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | - Vitaliy V Chagovets
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Elena V Romanova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Melnikova NV, Kudryavtseva AV, Borkhert EV, Pushkova EN, Fedorova MS, Snezhkina AV, Krasnov GS, Dmitriev AA. Sex-specific polymorphism of MET1 and ARR17 genes in Populus × sibirica. Biochimie 2019; 162:26-32. [PMID: 30935960 DOI: 10.1016/j.biochi.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/27/2019] [Indexed: 01/25/2023]
Abstract
The genus Populus is an effective model in tree genetics. This genus includes dioecious species and, recently, whole genome resequencing of P. trichocarpa and P. balsamifera enabled the identification of sex-linked regions and sex-associated single nucleotide polymorphisms (SNPs). These results created new opportunities to study sex determination in poplars. In the present work, we performed deep sequencing of genes encoding METHYLTRANSFERASE1 (MET1) and homolog of ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17), which are localized in a sex-linked region of Populus genome and contain a number of sex-associated SNPs. Amplicon libraries for 38 samples of P. × sibirica (19 males and 19 females) were sequenced on MiSeq Illumina (300 nt paired-end reads) and approximately 4000× coverage was obtained for each sample. In total, from 80 to 179 SNPs were detected in poplar individuals for MET1, and from 16 to 49 SNPs were detected for ARR17. We identified 17 sex-specific SNPs (11 in MET1 and 6 in ARR17) - they were present in all males but absent in all females. For identified sex-specific SNP sites, females were homozygous, while males were heterozygous. Moreover, colocation of sex-specific SNPs confirming the XY sex-determination system of poplars was revealed: in one allelic variant, males had the same nucleotides as females, while in the other, sex-specific SNPs were present. Based on the data obtained, we developed and successfully applied a high-resolution melting-based approach for sex identification in poplars. The developed molecular markers are useful for distinguishing between male and female poplars in scientific research and can also be applied to select male-only genotypes for use in city landscaping and production of paper, pulp, and biofuel.
Collapse
Affiliation(s)
- Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia.
| | - Elena V Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia.
| | - Elena N Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia.
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia.
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia.
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia.
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Orlov YL, Tatarinova TV, Zakhartsev MV, Kolchanov NA. Introduction to the 9th Young Scientists School on Systems Biology and Bioinformatics (SBB'2017). J Bioinform Comput Biol 2018; 16:1802001. [PMID: 29439645 DOI: 10.1142/s0219720018020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yuriy L Orlov
- 1 Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,2 Novosibirsk State University, Novosibirsk, Russia.,3 Institute of Marine Biology Researches of the RAS, Sevastopol, Russia
| | | | | | | |
Collapse
|