1
|
Liu R, Rong J, Wu Z, Taniguchi M, Bocian DF, Holten D, Lindsey JS. Panchromatic Absorbers Tethered for Bioconjugation or Surface Attachment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196501. [PMID: 36235037 PMCID: PMC9573448 DOI: 10.3390/molecules27196501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
The syntheses of two triads are reported. Each triad is composed of two perylene-monoimides linked to a porphyrin via an ethyne unit, which bridges the perylene 9-position and a porphyrin 5- or 15-position. Each triad also contains a single tether composed of an alkynoic acid or an isophthalate unit. Each triad provides panchromatic absorption (350–700 nm) with fluorescence emission in the near-infrared region (733 or 743 nm; fluorescence quantum yield ~0.2). The syntheses rely on the preparation of trans-AB-porphyrins bearing one site for tether attachment (A), an aryl group (B), and two open meso-positions. The AB-porphyrins were prepared by the condensation of a 1,9-diformyldipyrromethane and a dipyrromethane. The installation of the two perylene-monoimide groups was achieved upon the 5,15-dibromination of the porphyrin and the subsequent copper-free Sonogashira coupling, which was accomplished before or after the attachment of the tether. The syntheses provide relatively straightforward access to a panchromatic absorber for use in bioconjugation or surface-attachment processes.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Jie Rong
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Zhiyuan Wu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
- Correspondence: (D.F.B.); (D.H.); (J.S.L.); Tel.: +1-919-515-6406 (J.S.L.)
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889, USA
- Correspondence: (D.F.B.); (D.H.); (J.S.L.); Tel.: +1-919-515-6406 (J.S.L.)
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
- Correspondence: (D.F.B.); (D.H.); (J.S.L.); Tel.: +1-919-515-6406 (J.S.L.)
| |
Collapse
|
2
|
Yamasumi K, Mori S, Tanaka T, Ishida M, Furuta H. Metal complexes of 5,10,15-tris(pentafluorophenyl)-20-pyrrolyl N-confused porphyrin and its meso-pyrrolyl-bridged dimers: Synthesis and optical properties. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inner- and peripheral-metal complexation behaviors of 5,10,15-tris(pentafluorophenyl)-20-pyrrolyl N-confused porphyrin (5) and its meso-pyrrolyl-bridged dimers (6-Ni and 7-Ni) were studied in this work. The resulting inner-Ag and peripheral-BF2 complex (5-AgBF[Formula: see text] exhibited the bathochromically shifted absorption feature ([Formula: see text]772 nm), which was attributed to the BF2 complexation. Furthermore, the bis-Ag/Ni complexes of dimer (6-Ag[Formula: see text]Ni and 7-Ag[Formula: see text]Ni) revealed remarkably lower energy bands in the deeper near-infrared ([Formula: see text] NIR-II) region ([Formula: see text] = 1226 and 1042 nm, respectively) through strong interchromophore interactions.
Collapse
Affiliation(s)
- Kazuhisa Yamasumi
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Zhang J, Gong L, Zhang X, Zhu M, Su C, Ma Q, Qi D, Bian Y, Du H, Jiang J. Multipolar Porphyrin-Triazatruxene Arrays for Two-Photon Fluorescence Cell Imaging. Chemistry 2020; 26:13842-13848. [PMID: 32468667 DOI: 10.1002/chem.202001367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/24/2020] [Indexed: 11/06/2022]
Abstract
Two-photon excited fluorescent (TPEF) materials are highly desirable for bioimaging applications owing to their unique characteristics of deep-tissue penetration and high spatiotemporal resolution. Herein, by connecting one, two, or three electron-deficient zinc porphyrin units to an electron-rich triazatruxene core via ethynyl π-bridges, conjugated multipolar molecules TAT-(ZnP)n (n=1-3) were developed as TPEF materials for cell imaging. The three new dyes present high fluorescence quantum yields (0.40-0.47) and rationally improved two-photon absorption (TPA) properties. In particular, the peak TPA cross section of TAT-ZnP (436 GM) is significantly larger than that of the ZnP reference (59 GM). The δTPA values of TAT-(ZnP)2 and TAT-(ZnP)3 further increase to 1031 and up to 1496 GM, respectively, indicating the effect of incorporated ZnP units on the TPA properties. The substantial improvement of the TPEF properties is attributed to the formation of π-conjugated quadrapole/octupole molecules and the extension of D-π-A-D systems, which has been rationalized by density function theory (DFT) calculations. Moreover, all of the three new dyes display good biocompatibility and preferential targeting ability toward cytomembrane, thus can be superior candidates for TPEF imaging of living cells. Overall, this work demonstrated a promising strategy for the development of porphyrin-based TPEF materials by the construction and extension of D-π-A-D multipolar array.
Collapse
Affiliation(s)
- Jinghui Zhang
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lei Gong
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoshuang Zhang
- Department of Biology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengliang Zhu
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chaorui Su
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qing Ma
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hongwu Du
- Department of Biology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of, Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
5
|
Viere EJ, Qi W, Stanton IN, Zhang P, Therien MJ. Driving high quantum yield NIR emission through proquinoidal linkage motifs in conjugated supermolecular arrays. Chem Sci 2020; 11:8095-8104. [PMID: 34123083 PMCID: PMC8163388 DOI: 10.1039/d0sc03446k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High quantum yield NIR fluorophores are rare. Factors that drive low emission quantum yields at long wavelength include the facts that radiative rate constants increase proportional to the cube of the emission energy, while nonradiative rate constants increase in an approximately exponentially with decreasing S0-S1 energy gaps (in accordance with the energy gap law). This work demonstrates how the proquinoidal BTD building blocks can be utilized to minimize the extent of excited-state structural relaxation relative to the ground-state conformation in highly conjugated porphyrin oligomers, and shows that 4-ethynylbenzo[c][1,2,5]thiadiazole (E-BTD) units that terminate meso-to-meso ethyne-bridged (porphinato)zinc (PZnn) arrays, and 4,7-diethynylbenzo[c][1,2,5]thiadiazole (E-BTD-E) spacers that are integrated into the backbone of these compositions, elucidate new classes of impressive NIR fluorophores. We report the syntheses, electronic structural properties, and emissive characteristics of neoteric PZn-(BTD-PZn)n, PZn2-(BTD-PZn2)n, and BTD-PZnn-BTD fluorophores. Absolute fluorescence quantum yield (ϕ f) measurements, acquired using a calibrated integrating-sphere-based measurement system, demonstrate that these supermolecules display extraordinary ϕ f values that range from 10-25% in THF solvent, and between 28-36% in toluene solvent over the 700-900 nm window of the NIR. These studies underscore how the regulation of proquinoidal conjugation motifs can be exploited to drive excited-state dynamical properties important for high quantum yield long-wavelength fluorescence emission.
Collapse
Affiliation(s)
- Erin J Viere
- Department of Chemistry, French Family Science Center, Duke University 124 Science Drive Durham North Carolina 27708-0346 USA
| | - Wei Qi
- Department of Chemistry, French Family Science Center, Duke University 124 Science Drive Durham North Carolina 27708-0346 USA
| | - Ian N Stanton
- Department of Chemistry, French Family Science Center, Duke University 124 Science Drive Durham North Carolina 27708-0346 USA
| | - Peng Zhang
- Department of Chemistry, French Family Science Center, Duke University 124 Science Drive Durham North Carolina 27708-0346 USA
| | - Michael J Therien
- Department of Chemistry, French Family Science Center, Duke University 124 Science Drive Durham North Carolina 27708-0346 USA
| |
Collapse
|
6
|
Lee SH, Matula AJ, Hu G, Troiano JL, Karpovich CJ, Crabtree RH, Batista VS, Brudvig GW. Strongly Coupled Phenazine-Porphyrin Dyads: Light-Harvesting Molecular Assemblies with Broad Absorption Coverage. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8000-8008. [PMID: 30698407 DOI: 10.1021/acsami.8b20996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of light-harvesting architectures with broad absorption coverage in the visible region continues to be an important research area in the field of artificial photosynthesis. Here, we introduce a new class of ethynyl-linked panchromatic dyads composed of dibenzophenazines coupled ortho and meta to tetrapyrroles with an anchoring group that can be grafted onto metal oxide surfaces. Quantum chemical calculations and photophysical measurements of the synthesized materials reveal that both of the dibenzophenazine dyads absorb broadly from 300 to 636 nm and exhibit absorption bands different from those of the constituent chromophore units. Moreover, the different points of attachment of dibenzophenazines to tetrapyrroles give different absorption profiles which computations suggest result from differences in the planarity of the two dyads. Applicability of the dyads in artificial photosynthesis systems was assessed by their incorporation and characterization of their performance in dye-sensitized solar cells.
Collapse
Affiliation(s)
- Shin Hee Lee
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Adam J Matula
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Gongfang Hu
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Jennifer L Troiano
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Christopher J Karpovich
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Robert H Crabtree
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Victor S Batista
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Gary W Brudvig
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
7
|
Yuen JM, Diers JR, Alexy EJ, Roy A, Mandal AK, Kang HS, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Origin of Panchromaticity in Multichromophore-Tetrapyrrole Arrays. J Phys Chem A 2018; 122:7181-7201. [PMID: 30152691 DOI: 10.1021/acs.jpca.8b06815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Panchromatic absorbers that have robust photophysical properties enable new designs for molecular-based light-harvesting systems. Herein, we report experimental and theoretical studies of the spectral, redox, and excited-state properties of a series of perylene-monoimide-ethyne-porphyrin arrays wherein the number of perylene-monoimide units is stepped from one to four. In the arrays, a profound shift of absorption intensity from the strong violet-blue (B y and B x) bands of typical porphyrins into the green, red, and near-infrared (Q x and Q y) regions stems from mixing of chromophore and tetrapyrrole molecular orbitals (MOs), which gives multiplets of MOs having electron density spread over the entire array. This reduces the extensive mixing between porphyrin excited-state configurations and the transition-dipole addition and subtraction that normally leads to intense B and weak Q bands. Reduced configurational mixing derives from moderate effects of the ethyne and perylene on the MO energies and a more substantial effect of electron-density delocalization to reduce the configuration-interaction energy. Quantitative oscillator-strength analysis shows that porphyrin intensity is also shifted into the perylene-like green-region absorption and that the ethyne linkers lend absorption intensity. The reduced porphyrin configurational mixing also endows the S1 state with bacteriochlorin-like properties, including a 1-5 ns lifetime.
Collapse
Affiliation(s)
- Jonathan M Yuen
- Department of Chemistry , Washington University , St. Louis , Missouri 63130-4889 , United States
| | - James R Diers
- Department of Chemistry , University of California , Riverside , California 92521-0403 , United States
| | - Eric J Alexy
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Arpita Roy
- Department of Chemistry , Washington University , St. Louis , Missouri 63130-4889 , United States
| | - Amit Kumar Mandal
- Department of Chemistry , Washington University , St. Louis , Missouri 63130-4889 , United States
| | - Hyun Suk Kang
- Department of Chemistry , Washington University , St. Louis , Missouri 63130-4889 , United States
| | - Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center , Washington University , St. Louis , Missouri 63130-4889 , United States
| | - Christine Kirmaier
- Department of Chemistry , Washington University , St. Louis , Missouri 63130-4889 , United States
| | - Jonathan S Lindsey
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - David F Bocian
- Department of Chemistry , University of California , Riverside , California 92521-0403 , United States
| | - Dewey Holten
- Department of Chemistry , Washington University , St. Louis , Missouri 63130-4889 , United States
| |
Collapse
|
8
|
Hu G, Kang HS, Mandal AK, Roy A, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Synthesis of arrays containing porphyrin, chlorin, and perylene-imide constituents for panchromatic light-harvesting and charge separation. RSC Adv 2018; 8:23854-23874. [PMID: 35540249 PMCID: PMC9081848 DOI: 10.1039/c8ra04052d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Achieving solar light harvesting followed by efficient charge separation and transport is an essential objective of molecular-based artificial photosynthesis. Architectures that afford strong absorption across the near-UV to near-infrared region, namely panchromatic absorptivity, are critically important given the broad spectral distribution of sunlight. A tetrapyrrole–perylene pentad array was synthesized and investigated as a means to integrate panchromatic light harvesting and intramolecular charge separation. The pentad consists of three moieties: (1) a panchromatically absorbing triad, in which a porphyrin is strongly coupled to two perylene-monoimides via ethyne linkages; (2) a perylene-diimide electron acceptor; and (3) a chlorin hole-trapping unit. Integrating the three components with diphenylethyne linkers generates moderate electronic coupling for intramolecular energy and hole/electron transfer. The construction of the array relies on a stepwise strategy for incorporating modular pigment building blocks. The key building blocks include a trans-A2BC porphyrin, a chlorin, a perylene-monoimide, and a perylene-diimide, each bearing appropriate (halo, ethynyl) synthetic handles for Pd-catalyzed Sonogashira coupling reactions. One target pentad, three tetrads, four triads, and four monomeric benchmark compounds were synthesized from six building blocks (three new, three reported) and 10 new synthetic intermediates. Four of the tetrapyrrole-containing arrays are zinc chelated, and four others are in the free base form. Absorption and fluorescence spectra and fluorescence quantum yields were also measured. Collectively, investigations of the arrays reveal insights into principles for the design of novel reaction centers integrated with a panchromatic antenna for artificial photosynthetic studies. Twelve arrays containing porphyrin, chlorin, and/or perylene-imide units were synthesized to investigate panchromatic absorption integrated with charge separation.![]()
Collapse
Affiliation(s)
- Gongfang Hu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Hyun Suk Kang
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | | - Arpita Roy
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|
9
|
Evens KK, Splan KE. Spectroscopic characterization of free-base hydroxy(arylethynyl)porphyrins in acidic and basic media. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The addition of arylethynyl groups to the porphyrin macrocycle represents an effective strategy with which to enhance the light-harvesting properties of porphyrins. We now extend this modification to arylethynyl porphyrins with two or four [Formula: see text]-hydroxyphenyl substituents. Arylethynyl porphyrins bearing four, but not two, [Formula: see text]-hydroxyphenyl substituents show evidence of aggregation under acidic conditions. Under basic conditions, deprotonation of the peripheral hydroxyphenyl substituents results in substantially red-shifted spectral features and enhanced absorption in the Q-band region. When the hydroxyphenyl groups are appended to the porphyrin macrocylce via the ethynyl spacers, the spectral shifts observed upon deprotonation are significantly enhanced relative to those observed for hydroxyphenylporphyrins, highlighting the role of expanded conjugation in altering porphyrin photophysics.
Collapse
Affiliation(s)
- Kaarin K. Evens
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA
| | - Kathryn E. Splan
- Department of Chemistry, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA
| |
Collapse
|
10
|
Bai Y, Rawson J, Roget SA, Olivier JH, Lin J, Zhang P, Beratan DN, Therien MJ. Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation. Chem Sci 2017; 8:5889-5901. [PMID: 28989620 PMCID: PMC5619129 DOI: 10.1039/c7sc02150j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 06/06/2017] [Indexed: 12/24/2022] Open
Abstract
Modulating the extent of configuration interaction steers the excited-state relaxation pathways and dynamics of high oscillator strength NIR absorbers that exploit proquinoidal conjugation.
While the influence of proquinoidal character upon the linear absorption spectrum of low optical bandgap π-conjugated polymers and molecules is well understood, its impact upon excited-state relaxation pathways and dynamics remains obscure. We report the syntheses, electronic structural properties, and excited-state dynamics of a series of model highly conjugated near-infrared (NIR)-absorbing chromophores based on a (porphinato)metal(ii)-proquinoidal spacer-(porphinato)metal(ii) (PM-Sp-PM) structural motif. A combination of excited-state dynamical studies and time-dependent density functional theory calculations: (i) points to the cardinal role that excited-state configuration interaction (CI) plays in determining the magnitudes of S1 → S0 radiative (kr), S1 → T1 intersystem crossing (kISC), and S1 → S0 internal conversion (kIC) rate constants in these PM-Sp-PM chromophores, and (ii) suggests that a primary determinant of CI magnitude derives from the energetic alignment of the PM and Sp fragment LUMOs (ΔEL). These insights not only enable steering of excited-state relaxation dynamics of high oscillator strength NIR absorbers to realize either substantial fluorescence or long-lived triplets (τT1 > μs) generated at unit quantum yield (ΦISC = 100%), but also crafting of those having counter-intuitive properties: for example, while (porphinato)platinum compounds are well known to generate non-emissive triplet states (ΦISC = 100%) upon optical excitation at ambient temperature, diminishing the extent of excited-state CI in these systems realizes long-wavelength absorbing heavy-metal fluorophores. This work highlights approaches to: (i) modulate low-lying singlet excited-state lifetime over the picosecond-to-nanosecond time domain, (ii) achieve NIR fluorescence with quantum yields up to 25%, (iii) tune the magnitude of S1–T1 ISC rate constant from 109 to 1012 s–1 and (iv) realize T1-state lifetimes that range from ∼0.1 to several μs, for these model PM-Sp-PM chromophores, and renders new insights to evolve bespoke photophysical properties for low optical bandgap π-conjugated polymers and molecules based on proquinoidal conjugation motifs.
Collapse
Affiliation(s)
- Yusong Bai
- Department of Chemistry , French Family Science Center , Duke University , 124 Science Drive , Durham , North Carolina 27708-0346 , USA .
| | - Jeff Rawson
- Department of Chemistry , French Family Science Center , Duke University , 124 Science Drive , Durham , North Carolina 27708-0346 , USA .
| | - Sean A Roget
- Department of Chemistry , French Family Science Center , Duke University , 124 Science Drive , Durham , North Carolina 27708-0346 , USA .
| | - Jean-Hubert Olivier
- Department of Chemistry , French Family Science Center , Duke University , 124 Science Drive , Durham , North Carolina 27708-0346 , USA .
| | - Jiaxing Lin
- Department of Chemistry , French Family Science Center , Duke University , 124 Science Drive , Durham , North Carolina 27708-0346 , USA .
| | - Peng Zhang
- Department of Chemistry , French Family Science Center , Duke University , 124 Science Drive , Durham , North Carolina 27708-0346 , USA .
| | - David N Beratan
- Department of Chemistry , French Family Science Center , Duke University , 124 Science Drive , Durham , North Carolina 27708-0346 , USA .
| | - Michael J Therien
- Department of Chemistry , French Family Science Center , Duke University , 124 Science Drive , Durham , North Carolina 27708-0346 , USA .
| |
Collapse
|
11
|
Wang X, Brisard G, Fortin D, Karsenti PL, Harvey PD. Push–Pull Porphyrin-Containing Polymers: Materials Exhibiting Ultrafast Near-IR Photophysics. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaorong Wang
- Departement
de chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Gessie Brisard
- Departement
de chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Daniel Fortin
- Departement
de chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | | | - Pierre D. Harvey
- Departement
de chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|