1
|
Yadav I, Osterloh WR, Kadish KM, Sankar M. Synthesis, Spectral, Redox, and Sensing Studies of β-Dicyanovinyl-Appended Corroles and Their Metal Complexes. Inorg Chem 2023; 62:7738-7752. [PMID: 37146287 DOI: 10.1021/acs.inorgchem.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A new family of β-dicyanovinyl (DCV)-appended corroles represented as MTPC(MN) (where M = 3H, Cu, Ag, and Co(PPh3) and MN = malononitrile and TPC = 5,10,15-triphenylcorrole) were synthesized starting from the free base mono β-formyl corrole, H3TPC(CHO), and characterized along with their respective MTPC(CHO) and MTPC complexes as to their spectroscopic and electrochemical properties in nonaqueous media. Comparisons between the two series of corroles demonstrate a pronounced substituent effect of the β-DCV group on the physicochemical properties making the MTPC(MN) derivatives substantially easier to reduce and more difficult to oxidize than the formyl or unsubstituted corroles. In addition, the colorimetric and spectral detection of 11 different anions (X) in the form of tetrabutylammonium salts (TBAX, X = PF6-, OAc-, H2PO4-, CN-, HSO4-, NO3-, ClO4-, F-, Cl-, Br-, and I-) were also investigated in nonaqueous media. Of the investigated anions, only CN- was found to induce changes in the UV-vis and 1H NMR spectra of the β-DCV metallocorroles. This data revealed that CuTPC(MN) and AgTPC(MN) act as chemodosimeters for selective cyanide ion detection via a nucleophilic attack at the vinylic carbon of the DCV substituent, while (PPh3)CoTPC(MN) acts as a chemosensor for cyanide ion sensing via axial coordination to the cobalt metal center. A low-limit detection of cyanide ions was observed at 1.69 ppm for CuTPC(MN) and 1.17 ppm for AgTPC(MN) in toluene.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
2
|
Osterloh WR, Desbois N, Gros CP, Kadish KM. Hypercorroles Formed via the Tail that Wagged the Dog: Charge Transfer Interactions from Innocent Corroles to Meso-Nitrophenyl Substituents. Inorg Chem 2022; 61:20576-20586. [DOI: 10.1021/acs.inorgchem.2c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- W. Ryan Osterloh
- ICMUB, UMR CNRS 6302, Université Bourgogne Franche-Comte, BP 47870, 21078 Dijon Cedex, France
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Nicolas Desbois
- ICMUB, UMR CNRS 6302, Université Bourgogne Franche-Comte, BP 47870, 21078 Dijon Cedex, France
| | - Claude P. Gros
- ICMUB, UMR CNRS 6302, Université Bourgogne Franche-Comte, BP 47870, 21078 Dijon Cedex, France
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
3
|
Lemon CM, Maher AG, Anderson BL, Bloch ED, Huynh M, McCollar AL, Nocera DG. Solvent-Induced Spin-State Change in Copper Corroles. Inorg Chem 2022; 61:20288-20298. [DOI: 10.1021/acs.inorgchem.2c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Christopher M. Lemon
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
- Department of Chemistry & Biochemistry, Montana State University, P.O. Box 173400, Bozeman, Montana59717, United States
| | - Andrew G. Maher
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Bryce L. Anderson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Eric D. Bloch
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Michael Huynh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| | - Abie L. McCollar
- Department of Chemistry & Biochemistry, Montana State University, P.O. Box 173400, Bozeman, Montana59717, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts02138, United States
| |
Collapse
|
4
|
Naitana ML, Osterloh WR, Di Zazzo L, Nardis S, Caroleo F, Stipa P, Truong KN, Rissanen K, Fang Y, Kadish KM, Paolesse R. The Difficult Marriage of Triarylcorroles with Zinc and Nickel Ions. Inorg Chem 2022; 61:17790-17803. [PMID: 36285662 PMCID: PMC9644369 DOI: 10.1021/acs.inorgchem.2c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The coordination chemistry of corrole has witnessed a
great improvement
in the past few years and its Periodic Table has been widened to be
so large that it is compared with that of porphyrins. However, Ni
and Zn ions, commonly used with porphyrins for both synthetic and
theoretical purposes, are sparsely reported in the case of corroles.
Here, we report synthetic protocols for preparing Ni and Zn triarylcorrole
complexes. In the case of Zn, the preliminary oxidation of the free
base corrole in DMSO to the neutral corrole radical is a necessary
step to obtain the coordination of the metal ion, because the direct
reaction led to the formation of an open-chain tetrapyrrole. The Ni
complex could be directly obtained by heating the free base corrole
and Ni(II) salt to 100 °C in a DMSO solution containing FeCl3. The non-innocent nature of the corrole ligand for both complexes
has been elucidated by EPR, and in the case of the Zn derivative the
first spectroelectrochemical characterization is presented. The oxidation of triarylcorrole to the
corresponding neutral
radical species in DMSO is a key step to allow the preparation of
the corresponding Ni and Zn complexes. Without this step, the oxidative
ring opening of the macrocycle occurs, leading to the formation of
a linear tetrapyrrole. The spectroscopic characterization of these
species indicates their radical character. The stability of the Zn
complex can be improved by peripheral substitution.
Collapse
Affiliation(s)
- Mario L. Naitana
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| | - W. Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas77204-5003, United States
| | - Lorena Di Zazzo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| | - Fabrizio Caroleo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| | - Pierluigi Stipa
- Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed Urbanistica, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131Ancona, Italy
| | - Khai-Nghi Truong
- Department of Chemistry, University of Jyväskylä, 40014Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä, 40014Jyväskylä, Finland
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas77204-5003, United States
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas77204-5003, United States
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Roma, Italy
| |
Collapse
|
5
|
Ryan Osterloh W, Fang Y, Desbois N, Naitana ML, Brandès S, Pacquelet S, Gros CP, Kadish KM. Here’s looking at the reduction of noninnocent copper corroles via anion induced electron transfer. CR CHIM 2021. [DOI: 10.5802/crchim.95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Berionni Berna B, Savoldelli A, Pomarico G, Zurlo F, Magna G, Paolesse R, Fronczek FR, Smith KM, Nardis S. Grafting Copper and Gallium Corroles onto Zinc Oxide Nanoparticles. Chempluschem 2020; 84:154-160. [PMID: 31950693 DOI: 10.1002/cplu.201800576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/05/2019] [Indexed: 12/29/2022]
Abstract
Two different copper and gallium arylcorroles have been functionalized using the Vilsmeier-Haack reaction. A further Knoevenagel reaction with cyanoacetic acid was performed on both complexes, affording the desired products with yields above 90 %. The newly synthesized compounds have been thoroughly characterized by a combination of spectroscopic methods, optical analyses, and X-ray crystallography. Moreover, they have been tested as anchoring groups for the hydrothermal synthesis of ZnO nanoparticles. The morphology of the heterogeneous composites has been studied by SEM, EDS and fluorescence microscopy analyses, thus confirming the presence of the corrole macrocycle in the hybrid material.
Collapse
Affiliation(s)
- Beatrice Berionni Berna
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Andrea Savoldelli
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Pomarico
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesca Zurlo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Gabriele Magna
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Sara Nardis
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
7
|
|