1
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Chen Y, Zeng K, Li C, Liu X, Xie Y. A new type of multibenzyloxy-wrapped porphyrin sensitizers for developing efficient dye-sensitized solar cells. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyrin dyes have been widely used for the fabrication of efficient dye-sensitized solar cells (DSSCs). However, dye aggregation and charge recombination still exert negative effects on photovoltaic performance, resulting in unsatisfactory power conversion efficiencies (PCEs). Herein, we report a new class of porphyrin sensitizers, XW52 and XW53 employing four benzyloxy groups to wrap the porphyrin cores. As a result, an efficiency of 7.6% was obtained for XW52, with [Formula: see text] and [Formula: see text] of 668 mV and 16.63 mA cm[Formula: see text], respectively. Compared with XW52, an additional 2,6-dialkoxyphenyl group has been introduced to the N-atom of the phenothiazine donor to furnish XW53 with the aim to further improve the anti-aggregation character and the solubility, and thus the [Formula: see text] was improved to 674 mV, and a higher efficiency of 7.9% was achieved for XW53. Upon cosensitization with PT-C6, the[Formula: see text] and [Formula: see text] were synergistically enhanced to 727 mV and 18.67 mA cm[Formula: see text], respectively. As a result, a high efficiency of 9.6% was successfully achieved for the cosensitization system of XW53 + PT-C6. These results provide an effective novel strategy for designing efficient porphyrin dyes by introducing multiple benzyloxy groups to the meso-phenyl groups.
Collapse
Affiliation(s)
- Yingying Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong 130, Shanghai 200237, China
| | - Kaiwen Zeng
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong 130, Shanghai 200237, China
| | - Chengjie Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong 130, Shanghai 200237, China
| | - Xiujun Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong 130, Shanghai 200237, China
| | - Yongshu Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong 130, Shanghai 200237, China
| |
Collapse
|
3
|
Excited-state investigations of meso-mono-substituted-(amino-ferrocenyl)porphyrins: Experimental and theoretical approaches. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|