1
|
Qin X, Jiang Y, Yao F, Chen J, Kong F, Zhao P, Jin L, Cong Z. Anchoring a Structurally Editable Proximal Cofactor-like Module to Construct an Artificial Dual-center Peroxygenase. Angew Chem Int Ed Engl 2023; 62:e202311259. [PMID: 37713467 DOI: 10.1002/anie.202311259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
A recent novel strategy for constructing artificial metalloenzymes (ArMs) that target new-to-nature functions uses dual-functional small molecules (DFSMs) with catalytic and anchoring groups for converting P450BM3 monooxygenase into a peroxygenase. However, this process requires excess DFSMs (1000 equivalent of P450) owing to their low binding affinity for P450, thus severely limiting its practical application. Herein, structural optimization of the DFSM-anchoring group considerably enhanced their binding affinity by three orders of magnitude (Kd ≈10-8 M), thus approximating native cofactors, such as FMN or FAD in flavoenzymes. An artificial cofactor-driven peroxygenase was thus constructed. The co-crystal structure of P450BM3 bound to a DFSM clearly revealed a precatalytic state in which the DFSM participates in H2 O2 activation, thus facilitating peroxygenase activity. Moreover, the increased binding affinity substantially decreases the DFSM load to as low as 2 equivalents of P450, while maintaining increased activity. Furthermore, replacement of catalytic groups showed disparate selectivity and activity for various substrates. This study provides an unprecedented approach for assembling ArMs by binding editable organic cofactors as a co-catalytic center, thereby increasing the catalytic promiscuity of P450 enzymes.
Collapse
Affiliation(s)
- Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Fuquan Yao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Fanhui Kong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Panxia Zhao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Longyi Jin
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| |
Collapse
|
2
|
Simões MMQ, Cavaleiro JAS, Ferreira VF. Recent Synthetic Advances on the Use of Diazo Compounds Catalyzed by Metalloporphyrins. Molecules 2023; 28:6683. [PMID: 37764459 PMCID: PMC10537418 DOI: 10.3390/molecules28186683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Diazo compounds are organic substances that are often used as precursors in organic synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrangements, and carbene or metallocarbene insertions into C-H, N-H, O-H, S-H, and Si-H bonds. Typically, reactions from diazo compounds are catalyzed by transition metals with various ligands that modulate the capacity and selectivity of the catalyst. These ligands can modify and enhance chemoselectivity in the substrate, regioselectivity and enantioselectivity by reflecting these preferences in the products. Porphyrins have been used as catalysts in several important reactions for organic synthesis and also in several medicinal applications. In the chemistry of diazo compounds, porphyrins are very efficient as catalysts when complexed with low-cost metals (e.g., Fe and Co) and, therefore, in recent years, this has been the subject of significant research. This review will summarize the advances in the studies involving the field of diazo compounds catalyzed by metalloporphyrins (M-Porph, M = Fe, Ru, Os, Co, Rh, Ir) in the last five years to provide a clear overview and possible opportunities for future applications. Also, at the end of this review, the properties of artificial metalloenzymes and hemoproteins as biocatalysts for a broad range of applications, namely those concerning carbene-transfer reactions, will be considered.
Collapse
Affiliation(s)
- Mário M. Q. Simões
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - José A. S. Cavaleiro
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica Química, Universidade Federal Fluminense, Niterói 24241-002, RJ, Brazil
| |
Collapse
|
3
|
Lukas J, Družeta I, Kühl T. Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts. Biol Chem 2022; 403:1099-1105. [PMID: 36257922 DOI: 10.1515/hsz-2022-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Fe(III) heme is known to possess low catalytic activity when exposed to hydrogen peroxide and a reducing substrate. Efficient non-covalently linked Fe(III) heme-peptide complexes may represent suitable alternatives as a new group of green catalysts. Here, we evaluated a set of heme-peptide complexes by determination of their peroxidase-like activity and the kinetics of the catalytic conversion in both, the soluble and the immobilized state. We show the impact of peptide length on binding of the peptides to Fe(III) heme and the catalytic activity. Immobilization of the peptide onto a polymer support maintains the catalytic performance of the Fe(III) heme-peptide complex. This study thus opens up a new perspective with regard to the development of heterogeneous biocatalysts with a peroxidase-like activity.
Collapse
Affiliation(s)
- Joey Lukas
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
4
|
Ulloa Rojas JE, Oliveira VLD, de Araujo DR, Tofoli GR, de Oliveira MM, Carastan DJ, Palaci M, Giuntini F, Alves WA. Silk Fibroin/Poly(vinyl Alcohol) Microneedles as Carriers for the Delivery of Singlet Oxygen Photosensitizers. ACS Biomater Sci Eng 2021; 8:128-139. [PMID: 34752076 DOI: 10.1021/acsbiomaterials.1c00913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitizing drug and visible light produces highly cytotoxic reactive oxygen species (ROS) that leads to cell death. One of the main drawbacks of PDT for topical treatments is the limited skin penetration of some photosensitizers commonly used in this therapy. In this study, we propose the use of polymeric microneedles (MNs) prepared from silk fibroin and poly(vinyl alcohol) (PVA) to increase the penetration efficiency of porphyrin as possible applications in photodynamic therapy. The microneedle arrays were fabricated from mixtures in different proportions (1:0, 7:3, 1:1, 3:7, and 0:1) of silk fibroin and PVA solutions (7%); the polymer solutions were cast in polydimethylsiloxane (PDMS) molds and dried overnight. Patches containing grids of 10 × 10 microneedles with a square-based pyramidal shape were successfully produced through this approach. The polymer microneedle arrays showed good mechanical strength under compression force and sufficient insertion depth in both Parafilm M and excised porcine skin at different application forces (5, 20, 30, and 40 N) using a commercial applicator. We observe an increase in the cumulative permeation of 5-[4-(2-carboxyethanoyl) aminophenyl]-10,15,20-tris-(4-sulphonatophenyl) porphyrin trisodium through porcine skin treated with the polymer microneedles after 24 h. MNs may be a promising carrier for the transdermal delivery of photosensitizers for PDT, improving the permeation of photosensitizer molecules through the skin, thus improving the efficiency of this therapy for topical applications.
Collapse
Affiliation(s)
- Jose Eduardo Ulloa Rojas
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Vivian Leite de Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | | | - Giovana Radomille Tofoli
- São Leopoldo Mandic Faculty, São Leopoldo Mandic Research Institute, Campinas, 01332-000 São Paulo, Brazil
| | - Matheus Mendes de Oliveira
- Center for Engineering Modeling and Applied Social Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Danilo Justino Carastan
- Center for Engineering Modeling and Applied Social Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| | - Moises Palaci
- Center for Health Sciences, Federal University of Espirito Santo, Vitória, 29075-910 ES, Brazil
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Wendel Andrade Alves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580 SP, Brazil
| |
Collapse
|
5
|
Coin G, Latour JM. Nitrene transfers mediated by natural and artificial iron enzymes. J Inorg Biochem 2021; 225:111613. [PMID: 34634542 DOI: 10.1016/j.jinorgbio.2021.111613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
Amines are ubiquitous in biology and pharmacy. As a consequence, introducing N functionalities in organic molecules is attracting strong continuous interest. The past decade has witnessed the emergence of very efficient and selective catalytic systems achieving this goal thanks to engineered hemoproteins. In this review, we examine how these enzymes have been engineered focusing rather on the rationale behind it than the methodology employed. These studies are put in perspective with respect to in vitro and in vivo nitrene transfer processes performed by cytochromes P450. An emphasis is put on mechanistic aspects which are confronted to current molecular knowledge of these reactions. Forthcoming developments are delineated.
Collapse
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France; Univ. Grenoble Alpes, CNRS UMR 5250, DCM, CIRE, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France.
| |
Collapse
|
6
|
Carminati DM, Decaens J, Couve-Bonnaire S, Jubault P, Fasan R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF 2 -Containing Trisubstituted Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:7072-7076. [PMID: 33337576 PMCID: PMC7969403 DOI: 10.1002/anie.202015895] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 01/01/2023]
Abstract
The difluoromethyl (CHF2 ) group has attracted significant attention in drug discovery and development efforts, owing to its ability to serve as fluorinated bioisostere of methyl, hydroxyl, and thiol groups. Herein, we report an efficient biocatalytic method for the highly diastereo- and enantioselective synthesis of CHF2 -containing trisubstituted cyclopropanes. Using engineered myoglobin catalysts, a broad range of α-difluoromethyl alkenes are cyclopropanated in the presence of ethyl diazoacetate to give CHF2 -containing cyclopropanes in high yield (up to >99 %, up to 3000 TON) and with excellent stereoselectivity (up to >99 % de and ee). Enantiodivergent selectivity and extension of the method to the stereoselective cyclopropanation of mono- and trifluoromethylated olefins was also achieved. This methodology represents a powerful strategy for the stereoselective synthesis of high-value fluorinated building blocks for medicinal chemistry, as exemplified by the formal total synthesis of a CHF2 isostere of a TRPV1 inhibitor.
Collapse
Affiliation(s)
- Daniela M Carminati
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Jonathan Decaens
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | | | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
7
|
Carminati DM, Decaens J, Couve‐Bonnaire S, Jubault P, Fasan R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF
2
‐Containing Trisubstituted Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Daniela M. Carminati
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 14627 USA
| | - Jonathan Decaens
- Normandie Univ INSA Rouen UNIROUEN CNRS, COBRA (UMR 6014) 76000 Rouen France
| | | | - Philippe Jubault
- Normandie Univ INSA Rouen UNIROUEN CNRS, COBRA (UMR 6014) 76000 Rouen France
| | - Rudi Fasan
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 14627 USA
| |
Collapse
|