1
|
Mantareva V, Iliev I, Sulikovska I, Durmuş M, Angelov I. Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines. Int J Mol Sci 2023; 24:ijms24054400. [PMID: 36901830 PMCID: PMC10002512 DOI: 10.3390/ijms24054400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Photodynamic therapy (PDT) is a curative method, firstly developed for cancer therapy with fast response after treatment and minimum side effects. Two zinc(II) phthalocyanines (3ZnPc and 4ZnPc) and a hydroxycobalamin (Cbl) were investigated on two breast cancer cell lines (MDA-MB-231 and MCF-7) in comparison to normal cell lines (MCF-10 and BALB 3T3). The novelty of this study is a complex of non-peripherally methylpyridiloxy substituted Zn(II) phthalocyanine (3ZnPc) and the evaluation of the effects on different cell lines due to the addition of second porphyrinoid such as Cbl. The results showed the complete photocytotoxicity of both ZnPc-complexes at lower concentrations (<0.1 μM) for 3ZnPc. The addition of Cbl caused a higher phototoxicity of 3ZnPc at one order lower concentrations (<0.01 μM) with a diminishment of the dark toxicity. Moreover, it was determined that an increase of the selectivity index of 3ZnPc, from 0.66 (MCF-7) and 0.89 (MDA-MB-231) to 1.56 and 2.31, occurred by the addition of Cbl upon exposure with a LED 660 nm (50 J/cm2). The study suggested that the addition of Cbl can minimize the dark toxicity and improve the efficiency of the phthalocyanines for anticancer PDT applications.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113 Sofia, Bulgaria
- Correspondence: or ; Tel.: +359-9606-181
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bld. 25, 1113 Sofia, Bulgaria
| | - Inna Sulikovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bld. 25, 1113 Sofia, Bulgaria
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze 41400, Turkey
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Mal'shakova MV, Belykh DV. Intramolecular cyclization of 15-carboxy-13-amide derivatives of chlorin e 6 under the action of 2-chloro-1-methylpyridinium iodide. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s108842462250033x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Yıldız M, Bingul M, Zorlu Y, Saglam MF, Boga M, Temel M, Koca MS, Kandemir H, Sengul IF. Dimethoxyindoles based thiosemicarbazones as multi-target agents; synthesis, crystal interactions, biological activity and molecular modeling. Bioorg Chem 2022; 120:105647. [PMID: 35121556 DOI: 10.1016/j.bioorg.2022.105647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is known as one of the most devastating neurodegenerative disease diagnosed for the old-aged people and cholinesterase inhibitors (ChEI) can be used as an effective palliative treatment for AD. A range of novel monomeric and dimeric indole based thiosemicarbazone derivatives 17-28 was synthesized in order to target cholinesterases (ChE). Biological importance of the targeted compounds 17-28 was investigated by employing the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes along with three different antioxidant property determination assays, namely DPPH free radical scavenging, ABTS cationic radical decolarization, and CUPRAC cupric reducing antioxidant capacity. The compounds 18 and 19 displayed the best inhibitor activity against BChE with IC50 values of 7.42 and 1.95 μM, respectively. The antioxidant potentials were found to be moderate for DPPH and ABTS assays and the compounds 28 and 18 were the most potent candidates for both antioxidant assays. Cupric reducing capacity was the most promising assay and the compounds 25, 26 and 28 provided better inhibition values than all the standards. Further binding mode and affinity studies performed by molecular docking and molecular dynamics simulations. Accordingly, the compound 19 is the most plausible candidate that can compete with galantamine (GNT), a common pharmaceutics targeting both cholinesterase enzymes.
Collapse
Affiliation(s)
- Minhal Yıldız
- Department of Chemistry, Faculty of Art and Science, Tekirdag Namık Kemal University, Turkey
| | - Murat Bingul
- Department of Basic Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır 21280, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Mehmet F Saglam
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır 21280, Turkey
| | - Mutesir Temel
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Mehmet Serdar Koca
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Hakan Kandemir
- Department of Chemistry, Faculty of Art and Science, Tekirdag Namık Kemal University, Turkey
| | - Ibrahim F Sengul
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
4
|
Fu Y, Sun P, Li G, He R, Shi L, Xing N. Recent advances in the synthetic method and mechanism for the important N‐heterocyclic compound of 3‐methylindole. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Fu
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Pinghui Sun
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Gong Li
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Riyang He
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Lei Shi
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Na Xing
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| |
Collapse
|
5
|
Izgi S, Sengul IF, Şahin E, Koca MS, Cebeci F, Kandemir H. Synthesis of 7-azaindole based carbohydrazides and 1,3,4-oxadiazoles; Antioxidant activity, α-glucosidase inhibition properties and docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Harmandar K, Kaya EN, Saglam MF, Sengul IF, Atilla D. Synthesis and photo-physicochemical properties of phthalocyanines substituted with sterically hindered phenol. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Chakroun R, Jamoussi B, Al-Mur B, Timoumi A, Essalah K. Impedance Spectroscopy and Dielectric Relaxation of Imidazole-Substituted Palladium(II) Phthalocyanine (ImPdPc) for Organic Solar Cells. ACS OMEGA 2021; 6:10655-10667. [PMID: 34056219 PMCID: PMC8153755 DOI: 10.1021/acsomega.1c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the potential of palladium tetrakis (imidazole) phthalocyanine (PdPc(Imz)4) for use as an organic semiconductor for improving the photovoltaic performance. In order to get more information about the prevailing model of the conduction mechanism (correlated barrier hopping (CBH)) for PdPc(Imz)4, electrical impedance measurements were performed at different temperatures and the obtained data were simulated by the Kohlraush Williams Watt (KWW) approach. Theoretical studies (density functional theory (DFT)) were performed and molecular electrostatic potential (MEP) maps were also extracted to understand the relationship between the molecular structures and the molecular electronic structure of PdPc(Imz)4 and its semiconductor properties. Furthermore, studies on the AC electrical process as a function of temperature highlighted a hopping charge transport according to an equivalent electrical circuit composed of a parallel constant-phase element (CPE), capacitance in the grain boundary layer (C g), and resistance of the grain boundary (R g). To improve interpretation of the results, an in-depth analysis of the behavior of the electric transport was conducted. As a result, the correlated barrier hopping (CBH) conduction mechanism was shown to be the most suitable predominant conduction mechanism.
Collapse
Affiliation(s)
- Radhouane Chakroun
- Department
of Environmental Sciences, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassem Jamoussi
- Department
of Environmental Sciences, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bandar Al-Mur
- Department
of Environmental Sciences, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelmajid Timoumi
- Physics
Department, Faculty of Applied Science, Umm AL-Qura University, P.O. Box 715, Makkah 24381, Saudi Arabia
| | - Khaled Essalah
- Institut
Préparatoire aux Etudes d’Ingénieurs d’El
Manar, Tunis 2092, Tunisia
| |
Collapse
|
8
|
Harmandar K, Kaya EN, Saglam MF, Sengul IF, Atilla D. Bis-indole substituted phthalocyanines: Photophysical and photochemical properties. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tetra substituted peripheral and non-peripheral Zn(II) phthalocyanines were successfully synthesized employing 4-(bis(3-methyl-1H-indol-2-yl)methyl)phenol as a starting material. The structure of these synthesized compounds was confirmed using 1H NMR, [Formula: see text]C NMR, infrared (IR), UV-vis, and MALDI-TOF spectral data. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation) properties of all synthesized peripheral and non-peripheral compounds were investigated in order to determine the potential of these compounds for application in photodynamic therapy.
Collapse
Affiliation(s)
- Kevser Harmandar
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Esra N. Kaya
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Mehmet F. Saglam
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Ibrahim F. Sengul
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Devrim Atilla
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| |
Collapse
|
9
|
Synthesis and Characterization of New Imidazole Phthalocyanine for Photodegradation of Micro-Organic Pollutants from Sea Water. Catalysts 2020. [DOI: 10.3390/catal10080906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, a series of new metal phthalocyanines with imidazole function MPc(Imz) (M: Cd, Hg, Zn and Pd) were synthesized to improve the photocatalyst performances. All physical properties such as total energy, HOMO, LUMO energies of MPc(Imz), as well as their vibrational frequencies have been determined by DFT method using B3LYP theory level at 6-311G (d, p) and sdd basis set. The gap of energy level between work function (WF) of ITO and LUMO of PdPc(Imdz) was 1.53 eV and represents the highest barrier beneficial to electron injection compared to WF of ZnPc(Imz), HgPc(Imz), and CdPc(Imz). Furthermore, the PdPc(Imdz) thin films on indium tin oxide (ITO) glass were prepared by spin coating and vacuum evaporation technique, and were characterized by X-ray diffraction (XRD), surface electron morphology (SEM), atomic force microscopy (AFM), and UV–Vis spectroscopy. The photocatalytic activity of the ITO/glass supported thin films and degradation rates of chlorinated phenols in synthetic seawater, under visible light irradiation were optimized to achieve conversions of 80–90%. Experiments on synthetic seawater samples showed that the chloride-specific increase in photodegradation could be attributed to photochemically generated chloride radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet PdPc(Imz) (3PdPc(Imz)*), reactive oxygen species]. The major 2,3,4,5-Tetrachlorophenol degradation intermediates identified by gas chromatography-mass spectrometry (GC/MS) were 2,3,5-Trichlorophenol, 3,5-dichlorophenol, dichlorodihydroxy-benzene and 3,4,5-trichlorocatechol.
Collapse
|
10
|
AYARI S, HIRABAYASHI K, SHIMIZU T, JAMOUSSI B, SAGLAM MF, ATILLA D, SUGIURA KI. Crystal Structure of 3-(3-Methyl-1<i>H</i>-indole-1-yl)phthalonitrile. X-RAY STRUCTURE ANALYSIS ONLINE 2020. [DOI: 10.2116/xraystruct.36.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sami AYARI
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University
- Laboratory of Chemical Analysis, Institute of Higher and Continuing Education, 2000 Bardo, Sciences Faculty of Tunis, University of Tunis El Manar
| | - Kazunori HIRABAYASHI
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University
| | - Toshio SHIMIZU
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University
| | - Bassem JAMOUSSI
- Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University
| | - Mehmet F. SAGLAM
- Department of Chemistry, Faculty of Science, Gebze Technical University
| | - Devrim ATILLA
- Department of Chemistry, Faculty of Science, Gebze Technical University
| | - Ken-ichi SUGIURA
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University
| |
Collapse
|