1
|
Zhang F, Qiu Z, Huang A, Cheng Y, Fan G. Global dynamics and bifurcation analysis of an insect-borne plant disease model with two transmission routes. INT J BIOMATH 2022. [DOI: 10.1142/s1793524522500553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Huanglongbing (HLB) is a plant disease mainly spread by the insect-borne citrus psyllid. It is the most destructive citrus pathosystem worldwide. To understand the impact of sexual transmission on HLB dynamics, we propose a host–vector–HLB compartment model incorporating two transmission routes. The basic reproduction number [Formula: see text] is derived. Various interventions of the disease are assessed. We also investigate the effect of different incidence functions to simulate sexual transmission. For the case of sublinear incidence functions, the disease-free equilibrium is globally asymptotically stable (GAS) provided [Formula: see text]. For mass action incidence of sexual transmission, the endemic equilibrium is GAS provided [Formula: see text]. However, under nonlinear incidence, it is proved that the model may exhibit backward bifurcation. Theoretical and numerical studies reveal that (i) different forces of infection between heterosexual psyllids in the model may have a distinct impact on disease dynamics; (ii) sensitivity analysis shows that for [Formula: see text], the transmission rate between host and vector is more sensitive parameter than that between heterosexual psyllids; (iii) if the sexual transmission is ignored, the disease burden is likely to be underestimated in comparison with realistic scenarios; (iv) in the absence of chemical insecticides, the combined use of yellow sticky traps and injection of nutrient solutions can be more effective in suppressing the spread of HLB. These findings provide valuable insights for public policymakers to determine the long-term viability of implemented HLB management strategies and highlight the urgency of finding sustainable HLB solutions.
Collapse
Affiliation(s)
- Fumin Zhang
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, P. R. China
- Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, P. R. China
| | - Zhipeng Qiu
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, P. R. China
| | - Aijun Huang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, P. R. China
| | - Yan Cheng
- College of Mathematics, Taiyuan University of Technology, Taiyuan, P. R. China
| | - Guihong Fan
- Department of Mathematics, Columbus State University, Columbus, GA, USA
| |
Collapse
|