1
|
Georgieva MN, Rimskaya-Korsakova NN, Krolenko VI, Van Dover CL, Amon DJ, Copley JT, Plouviez S, Ball B, Wiklund H, Glover AG. A tale of two tubeworms: taxonomy of vestimentiferans (Annelida: Siboglinidae) from the Mid-Cayman Spreading Centre. INVERTEBR SYST 2023. [DOI: 10.1071/is22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The vestimentiferan tubeworm genera Lamellibrachia and Escarpia inhabit deep-sea chemosynthesis-based ecosystems, such as seeps, hydrothermal vents and organic falls, and have wide distributions across the Pacific, Atlantic and Indian Oceans. In 2010–2012 during initial explorations of hydrothermal vents of the Mid-Cayman Spreading Centre (MCSC), both genera were found to co-occur at the Von Damm Vent Field (VDVF), a site characterised by diffuse flow, therefore resembling a ‘hydrothermal seep’. Here, we erect two new vestimentiferan tubeworm species from the VDVF, Lamellibrachia judigobini sp. nov. and Escarpia tritentaculata sp. nov. Lamellibrachia judigobini sp. nov. differs genetically and morphologically from other Lamellibrachia species, and has a range that extends across the Gulf of Mexico, MCSC, off Trinidad and Tobago, and Barbados, and also across both vents and seeps and 964–3304-m water depth. Escarpia tritentaculata sp. nov. is distinguished from other Escarpia species primarily based on morphology and is known only from vents of the MCSC at 2300-m depth. This study highlights the incredible habitat flexibility of a single Lamellibrachia species and the genus Escarpia, and historic biogeographic connections to the eastern Pacific for L. judigobini sp. nov. and the eastern Atlantic for E. tritentaculata sp. nov. ZooBank: urn:lsid:zoobank.org:pub:D9F72BD4-FDE1-4C0A-B84B-A08D06F2A981
Collapse
|
2
|
Pre-Messinian Deposits of the Mediterranean Ridge: Biostratigraphic and Geochemical Evidence from the Olimpi Mud Volcano Field. WATER 2021. [DOI: 10.3390/w13101367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents the results derived from micropaleontological and organic geochemical analyses of mud breccia samples obtained (through gravity coring) from five mud volcanoes (Gelendzhik, Heraklion, Moscow, Milano, Leipzig) located at the Olimpi mud volcano field on the Mediterranean Ridge accretionary complex. A thorough calcareous nannofossil semi-quantitative analysis was performed to determine the biostratigraphic assignment of the deep-seated source strata. Mudstone/shale clasts of different stratigraphic levels were identified and assigned to the Miocene nannofossil biozones CNM10, CNM8–9, CNM7, CNM6–7, and Oligocene CNO4/CNO5. A single mudstone clast from the Gelendzhik plateau, assigned to the biozone CNM10, demonstrated unique micropaleontological and geochemical characteristics, suggesting a sapropelic origin. Subsequently, the total organic carbon (TOC) content and thermal maturity of the collected mud breccias was evaluated using the Rock-Eval pyrolysis technique, and their oil and gas potential was estimated. The pyrolyzed sediments were both organic rich and organic poor (TOC >0.5% or <0.5%, respectively), with their organic matter showing characteristics of the type III kerogen that consists of adequate hydrogen to be gas generative, but insufficient hydrogen to be oil prone. However, the organic matter of the late Serravallian (CNM10) sapropelic mudstone was found to consist of a mixed type II/III kerogen, implying an oil-prone source rock.
Collapse
|
3
|
Mud extrusion and ring-fault gas seepage - upward branching fluid discharge at a deep-sea mud volcano. Sci Rep 2018; 8:6275. [PMID: 29674649 PMCID: PMC5908856 DOI: 10.1038/s41598-018-24689-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/05/2018] [Indexed: 11/16/2022] Open
Abstract
Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.
Collapse
|
4
|
Talas E, Duman M, Küçüksezgin F, Brennan ML, Raineault NA. Sedimentology and geochemistry of mud volcanoes in the Anaximander Mountain Region from the Eastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2015; 95:63-71. [PMID: 25935808 DOI: 10.1016/j.marpolbul.2015.04.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes.
Collapse
Affiliation(s)
- Ezgi Talas
- Dokuz Eylul University, Institute of Marine Sciences & Technology, Inciralti, 35340 Izmir, Turkey
| | - Muhammet Duman
- Dokuz Eylul University, Institute of Marine Sciences & Technology, Inciralti, 35340 Izmir, Turkey.
| | - Filiz Küçüksezgin
- Dokuz Eylul University, Institute of Marine Sciences & Technology, Inciralti, 35340 Izmir, Turkey
| | - Michael L Brennan
- Center for Ocean Exploration, Graduate School of Oceanography, University of Rhode Island, OSEC 103A, Narragansett, RI 02882, USA
| | | |
Collapse
|
5
|
Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 2010; 72:429-44. [PMID: 20370830 DOI: 10.1111/j.1574-6941.2010.00857.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes-Heraklion, Greece
| | | | | | | |
Collapse
|
6
|
Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiol Ecol 2008; 64:362-77. [PMID: 18422633 DOI: 10.1111/j.1574-6941.2008.00463.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacterial and archaeal communities in sediments obtained from three geographically-distant mud volcanoes, a control site and a microbial mat in the Eastern Mediterranean deep-sea were characterized using direct 16S rRNA gene analyses. The data were thus in relation to the chemical characteristics of the (stratified) habitats to infer community structure-habitat relationships. The bacterial sequences in the different habitats were related to those of Actinobacteria, Bacilli, Chloroflexi, Alpha-, Beta-, Gamma-, Delta- and Epsilonproteobacteria and unclassified bacteria, including the JS1 group. The archaeal sequences found were affiliated with those of the Methanosarcinales, Thermoplasmales, Halobacteriales and Crenarchaea belonging to marine benthic group I and B, as well as MCG group archaea. In each sample, the communities were diverse and unique at the phylotype level. However, at higher taxonomic levels, similar groups were found in different sediments, and similar depth layers tended to contain similar communities. The sequences that dominated in all top layers (as well as in the mat) probably represented organisms involved in aerobic heterotrophy, sulfide-based chemoautotrophy and methanotrophy and/or methylotrophy. Sequences of organisms most likely involved in anaerobic methane oxidation, sulfate reduction and anaerobic heterotrophy were predominantly found in deeper layers. The data supported the notion of (1) uniqueness of each habitat at fine taxonomic levels, (2) stratification in depth and (3) conservation of function in the sediments.
Collapse
|
7
|
Nisbet EG. Have sudden large releases of methane from geological reservoirs occurred since the Last Glacial Maximum, and could such releases occur again? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2002; 360:581-607. [PMID: 12804295 DOI: 10.1098/rsta.2001.0958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Methane emissions from geological reservoirs may have played a major role in the sudden events terminating glaciation, both at the start of the Bølling/Allerød and also at the end of the Younger Dryas. These reservoirs include Arctic methane hydrates and also methane hydrate stored in offshore marine sediments in tropical and temperate latitudes. Emissions from hydrate stores may have resonated with tropical wetland emissions, each reinforcing the other. Because methane is such a powerful greenhouse gas, much smaller emissions of methane, compared with carbon dioxide, are required in order to have the same short-term impact by climate forcing. The methane-linked hypothesis has much geological support from sea-floor evidence of emission. However, Greenland ice-core records have been interpreted as showing methane as a consequential factor, rather than the leader, of change. This interpretation can be challenged on the grounds that temperature gradients in Greenland ice record local changes and local timing of a step-like shift in weather fronts, while methane concentrations record changes on a hemispheric and global scale. There are large remaining hydrate reservoirs in the Arctic and in shelf sediments globally, and there is substantial risk of further emissions.
Collapse
Affiliation(s)
- Euan G Nisbet
- Department of Geology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
8
|
Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJ, Gottschal JC. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. The Medinaut Shipboard Scientific Party. Appl Environ Microbiol 2000; 66:1126-32. [PMID: 10698781 PMCID: PMC91952 DOI: 10.1128/aem.66.3.1126-1132.2000] [Citation(s) in RCA: 322] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear. In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean Ridge were collected via the submersible Nautile. Geochemical data strongly indicate that methane is oxidized under anaerobic conditions, and compound-specific carbon isotope analyses indicate that this reaction is facilitated by a consortium of archaea and bacteria. Specifically, these methane-rich sediments contain high abundances of methanogen-specific biomarkers that are significantly depleted in (13)C (delta(13)C values are as low as -95 per thousand). Biomarkers inferred to derive from sulfate-reducing bacteria and other heterotrophic bacteria are similarly depleted. Consistent with previous work, such depletion can be explained by consumption of (13)C-depleted methane by methanogens operating in reverse and as part a consortium of organisms in which sulfate serves as the terminal electron acceptor. Moreover, our results indicate that this process is widespread in Mediterranean mud volcanoes and in some localized settings is the predominant microbiological process.
Collapse
Affiliation(s)
- R D Pancost
- Department of Marine Biogeochemistry and Toxicology, Netherlands Institute for Sea Research, 1790AB Den Burg (Texel), The Netherlands
| | | | | | | | | |
Collapse
|
9
|
|