1
|
Galloway JM, Parsons MB, Ardakani OH, Falck H, Fewster RE, Swindles GT, Sanei H, Palmer MJ, Nasser NA, Patterson RT. Organic matter is a predominant control on total mercury concentration of near-surface lake sediments across a boreal to low Arctic tundra transect in northern Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176466. [PMID: 39332738 DOI: 10.1016/j.scitotenv.2024.176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Mercury (Hg) is a bioavailable and toxic element with concentrations that are persistently high or rising in some Arctic and subarctic lakes despite reduced atmospheric emissions in North America. This is due to rising Hg emissions to the atmosphere outside of North America, enhanced sequestration of Hg to sediments by climate-mediated increases in primary production, and ongoing release of Hg from terrestrial reservoirs. To evaluate the influence of organic matter and other parameters on Hg accumulation in northern lakes, near-surface sediments were sampled from 60 lakes across a boreal to shrub tundra gradient in the central Northwest Territories, Canada. The organic matter of the lake sediments, assessed using programmed pyrolysis and petrology, is composed of a mixture of terrestrial, aquatic, and inert organic matter. The proportion of algal-derived organic matter is higher in sediments of lakes below treeline relative to shrub tundra sites. Total sedimentary Hg concentration is correlated to all organic matter constituents but is unrelated to latitude or lake position below or above treeline. The concentrations of Ag, Ca, P, S, U, Ti, Y, Cd, and Zn are also strong predictors of total sedimentary Hg concentration, indicating input from a common geogenic source and/or common sequestration pathways associated with organic matter. Catchment area is a strong negative predictor of total sedimentary Hg concentration, particularly in lakes above treeline, possibly due to retention capacity of Hg and other elements in local sinks. This research highlights the complexity of controls on Hg sequestration in sediment and shows that while organic matter is a strong predictor of total sedimentary Hg concentration on a landscape scale and across extreme gradients in climate and associated vegetation and permafrost, other factors such as catchment area and sources from mineralized bedrock are also important.
Collapse
Affiliation(s)
- Jennifer M Galloway
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, Calgary, 3303-33rd Street N.W., Calgary, AB T2L 2A7, Canada; Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Michael B Parsons
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Omid H Ardakani
- Natural Resources Canada/Ressources naturelles Canada (NRCan/RNCan), Geological Survey of Canada/Commission géologique du Canada, Calgary, 3303-33rd Street N.W., Calgary, AB T2L 2A7, Canada
| | - Hendrik Falck
- Diamonds, Royalties and Financial Analysis, Government of the Northwest Territories, P.O. Box 1320, Yellowknife, NT X1A 2L9, Canada
| | - Richard E Fewster
- Geography and Chrono Centre, School of Natural and Built Environment, Queen's University, University Road, Belfast BT7 1NN, United Kingdom
| | - Graeme T Swindles
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; Geography and Chrono Centre, School of Natural and Built Environment, Queen's University, University Road, Belfast BT7 1NN, United Kingdom
| | - Hamed Sanei
- Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2 Building 1671, Aarhus 8000, Denmark
| | - Michael J Palmer
- Aurora Research Institute, Aurora College, 5004-54 St, Yellowknife, NT X1A 2R3, Canada
| | - Nawaf A Nasser
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - R Timothy Patterson
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Reimink JR, Smye AJ. Subaerial weathering drove stabilization of continents. Nature 2024; 629:609-615. [PMID: 38720084 PMCID: PMC11096103 DOI: 10.1038/s41586-024-07307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 05/15/2024]
Abstract
Earth's silica-rich continental crust is unique among the terrestrial planets and is critical for planetary habitability. Cratons represent the most imperishable continental fragments and form about 50% of the continental crust of the Earth, yet the mechanisms responsible for craton stabilization remain enigmatic1. Large tracts of strongly differentiated crust formed between 3 and 2.5 billion years ago, during the late Mesoarchaean and Neoarchaean time periods2. This crust contains abundant granitoid rocks with elevated concentrations of U, Th and K; the formation of these igneous rocks represents the final stage of stabilization of the continental crust2,3. Here, we show that subaerial weathering, triggered by the emergence of continental landmasses above sea level, facilitated intracrustal melting and the generation of peraluminous granitoid magmas. This resulted in reorganization of the compositional architecture of continental crust in the Neoarchaean period. Subaerial weathering concentrated heat-producing elements into terrigenous sediments that were incorporated into the deep crust, where they drove crustal melting and the chemical stratification required to stabilize the cratonic lithosphere. The chain of causality between subaerial weathering and the final differentiation of Earth's crust implies that craton stabilization was an inevitable consequence of continental emergence. Generation of sedimentary rocks enriched in heat-producing elements, at a time in the history of the Earth when the rate of radiogenic heat production was on average twice the present-day rate, resolves a long-standing question of why many cratons were stabilized in the Neoarchaean period.
Collapse
Affiliation(s)
- Jesse R Reimink
- Department of Geosciences, Pennsylvania State University, University Park, PA, USA.
| | - Andrew J Smye
- Department of Geosciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Abstract
The formation and preservation of cratons-the oldest parts of the continents, comprising over 60 per cent of the continental landmass-remains an enduring problem. Key to craton development is how and when the thick strong mantle roots that underlie these regions formed and evolved. Peridotite melting residues forming cratonic lithospheric roots mostly originated via relatively low-pressure melting and were subsequently transported to greater depth by thickening produced by lateral accretion and compression. The longest-lived cratons were assembled during Mesoarchean and Palaeoproterozoic times, creating the stable mantle roots 150 to 250 kilometres thick that are critical to preserving Earth's early continents and central to defining the cratons, although we extend the definition of cratons to include extensive regions of long-stable Mesoproterozoic crust also underpinned by thick lithospheric roots. The production of widespread thick and strong lithosphere via the process of orogenic thickening, possibly in several cycles, was fundamental to the eventual emergence of extensive continental landmasses-the cratons.
Collapse
|
4
|
Liu J, Pearson DG, Wang LH, Mather KA, Kjarsgaard BA, Schaeffer AJ, Irvine GJ, Kopylova MG, Armstrong JP. Plume-driven recratonization of deep continental lithospheric mantle. Nature 2021; 592:732-736. [PMID: 33911271 DOI: 10.1038/s41586-021-03395-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022]
Abstract
Cratons are Earth's ancient continental land masses that remain stable for billions of years. The mantle roots of cratons are renowned as being long-lived, stable features of Earth's continents, but there is also evidence of their disruption in the recent1-6 and more distant7-9 past. Despite periods of lithospheric thinning during the Proterozoic and Phanerozoic eons, the lithosphere beneath many cratons seems to always 'heal', returning to a thickness of 150 to 200 kilometres10-12; similar lithospheric thicknesses are thought to have existed since Archaean times3,13-15. Although numerous studies have focused on the mechanism for lithospheric destruction2,5,13,16-19, the mechanisms that recratonize the lithosphere beneath cratons and thus sustain them are not well understood. Here we study kimberlite-borne mantle xenoliths and seismology across a transect of the cratonic lithosphere of Arctic Canada, which includes a region affected by the Mackenzie plume event 1.27 billion years ago20. We demonstrate the important role of plume upwelling in the destruction and recratonization of roughly 200-kilometre-thick cratonic lithospheric mantle in the northern portion of the Slave craton. Using numerical modelling, we show how new, buoyant melt residues produced by the Mackenzie plume event are captured in a region of thinned lithosphere between two thick cratonic blocks. Our results identify a process by which cratons heal and return to their original lithospheric thickness after substantial disruption of their roots. This process may be widespread in the history of cratons and may contribute to how cratonic mantle becomes a patchwork of mantle peridotites of different age and origin.
Collapse
Affiliation(s)
- Jingao Liu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing, China.
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - D Graham Pearson
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kathy A Mather
- Department of Earth Sciences, Durham University, Durham, UK
| | | | | | | | - Maya G Kopylova
- Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|