1
|
Wang T, Huang H, Zhang J, Wang C, Cao G, Xiao W, Yang Q, Bao X. Voluminous continental growth of the Altaids and its control on metallogeny. Natl Sci Rev 2023; 10:nwac283. [PMID: 36824621 PMCID: PMC9942667 DOI: 10.1093/nsr/nwac283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The Altaids is generally considered to be the largest Phanerozoic accretionary orogen on Earth, but it is unclear whether it was associated with extensive continental crustal growth and whether there is a link between the crustal growth and ore mineralization. This paper reviews whole-rock Nd and zircon Hf isotope data for felsic-intermediate-mafic igneous rocks in the Altaids and presents Nd + Hf isotopic contour maps for this region. The maps highlight the 3D lithospheric compositional architecture of the Altaids and make it possible to quantitatively evaluate the crustal growth and its relationship with ore deposits. The Altaids hosts ∼4 107 350 km2 and ∼184 830 750 km3 (assuming a crustal thickness of 40-50 km) juvenile crust (ϵ Nd(t) > 0), accounting for 58% by isotope-mapped area (∼7 010 375 km2) of almost all outcrops of the Altaids (∼8 745 000 km2) and formed during 1000-150 Ma (mainly 600-150 Ma). The juvenile crustal, slightly juvenile-reworked crustal and slightly reworked crustal provinces controlled the Cu-Au, the Pb-Zn-Ag and the Li-Be, Nb-Ta and W-Sn ore deposits. According to the crustal architecture and background of deep compositions, we propose that the ore deposits can be grouped into three types: juvenile crust-related, mixed-source (or slightly juvenile crust)-related and reworked crust-related. This highlights the close relationship between accretion, continental growth and mineralization, and will facilitate exploration for specific ore-deposit types in the Altaids.
Collapse
Affiliation(s)
- Tao Wang
- Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
- Key Laboratory of Earth Probe and Geodynamics, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - He Huang
- Key Laboratory of Earth Probe and Geodynamics, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Jianjun Zhang
- Key Laboratory of Earth Probe and Geodynamics, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Chaoyang Wang
- Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
- Key Laboratory of Earth Probe and Geodynamics, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Guangyue Cao
- Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Wenjiao Xiao
- National Key Laboratory of Arid Area Ecological Security and Sustainable Development, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Qidi Yang
- Wuhan Center of China Geological Survey, Wuhan 430205, China
| | - Xuewei Bao
- School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Changing Carboniferous Arc Magmatism in the Ossa-Morena Zone (Southwest Iberia): Implications for the Variscan Belt. MINERALS 2022. [DOI: 10.3390/min12050597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Carboniferous magmatism in southwestern Iberia was continuously active for more than 60 m.y. during the development of the Appalachian-Variscan belt of North America, North Africa and Western-Central Europe. This collisional orogen that records the closure of the Rheic Ocean is essential to understanding the late Paleozoic amalgamation of the Pangea supercontinent. However, the oblique convergence between Laurussia and Gondwana that lasted from the Devonian to the Carboniferous was likely more complex. Recently, a new tectonic model has regarded the Iberia Variscan belt as the site of coeval collisional and accretionary orogenic processes. Early Carboniferous plutonic rocks of southwest Iberia indicate arc magmatism in Gondwana. The Ossa-Morena Zone (OMZ) acted as the upper plate in relation to the geometry of the Paleotethys subduction. This active accretionary-extensional margin was progressively involved in a collisional phase during the Late Carboniferous. Together, the Évora Massif and the Beja Igneous Complex include three successive stages of bimodal magmatism, with a chemical composition indicative of a long-lived subduction process lasting from the Tournaisian to the Moscovian in the OMZ. The earliest stage of arc magmatism includes the Tournaisian Beja and Torrão gabbro-dioritic rocks of the Layered Gabbroic Sequence. We present new geochemical and Nd isotopic and U-Pb geochronological data for magmatic rocks from the Main (Visean-Serpukhovian) and Latest (Bashkirian-Moscovian) stages of arc magmatism. Visean Toca da Moura trachyandesite and rhyolites and Bashkirian Baleizão porphyries and Alcáçovas quartz diorite share enriched, continental-crust like characteristics, as indicated by major and trace elements, mainly suggesting the addition of calc-alkaline magma extracted from various mantle sources in a subduction-related setting (i.e., Paleotethys subduction). New U-Pb zircon geochronology data have allowed us to establish a crystallization age of 317 ± 3 Ma (Bashkirian) for Alcáçovas quartz diorite that confirms a temporal link with Baleizão porphyry. Positive εNd(t) values for the Carboniferous igneous rocks of the Beja Igneous Complex and the Évora gneiss dome indicate production of new juvenile crust, whereas negative εNd(t) values also suggest different grades of magma evolution involving crustal contamination. The production and evolution of Carboniferous continental crust in the OMZ was most likely associated with the development of an active continental margin during the convergence of the Paleotethys Ocean with Gondwana, involving juvenile materials and different grades of crustal contamination.
Collapse
|
3
|
Hawkesworth C, Cawood PA, Dhuime B. The evolution of the continental crust and the onset of plate tectonics. FRONTIERS IN EARTH SCIENCE 2020; 8:326. [PMID: 32944569 PMCID: PMC7116083 DOI: 10.3389/feart.2020.00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Earth is the only known planet where plate tectonics is active, and different studies have concluded that plate tectonics commenced at times from the early Hadean to 700 Ma. Many arguments rely on proxies established on recent examples, such as paired metamorphic belts and magma geochemistry, and it can be difficult to establish the significance of such proxies in a hotter, older Earth. There is the question of scale, and how the results of different case studies are put in a wider global context. We explore approaches that indicate when plate tectonics became the dominant global regime, in part by evaluating when the effects of plate tectonics were established globally, rather than the first sign of its existence regionally. The geological record reflects when the continental crust became rigid enough to facilitate plate tectonics, through the onset of dyke swarms and large sedimentary basins, from relatively high-pressure metamorphism and evidence for crustal thickening. Paired metamorphic belts are a feature of destructive plate margins over the last 700 Myr, but it is difficult to establish whether metamorphic events are associated spatially as well as temporally in older terrains. From 3.8-2.7 Ga, suites of high Th/Nb (subduction-related on the modern Earth) and low Th/Nb (non-subduction-related) magmas were generated at similar times in different locations, and there is a striking link between the geochemistry and the regional tectonic style. Archaean cratons stabilised at different times in different areas from 3.1-2.5 Ga, and the composition of juvenile continental crust changed from mafic to more intermediate compositions. Xenon isotope data indicate that there was little recycling of volatiles before 3 Ga. Evidence for the juxtaposition of continental fragments back to ~2.8 Ga, each with disparate histories highlights that fragments of crust were moving around laterally on the Earth. The reduction in crustal growth at ~ 3 Ga is attributed to an increase in the rates at which differentiated continental crust was destroyed, and that coupled with the other changes at the end of the Archaean are taken to reflect the onset of plate tectonics as the dominant global regime.
Collapse
Affiliation(s)
- Chris Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Peter A. Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Bruno Dhuime
- Géosciences Montpellier, CNRS & Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
4
|
Peridotite weathering is the missing ingredient of Earth's continental crust composition. Nat Commun 2018; 9:634. [PMID: 29434235 PMCID: PMC5809581 DOI: 10.1038/s41467-018-03039-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/16/2018] [Indexed: 11/24/2022] Open
Abstract
The chemical composition of the continental crust cannot be adequately explained by current models for its formation, because it is too rich in Ni and Cr compared to that which can be generated by any of the proposed mechanisms. Estimates of the crust composition are derived from average sediment, while crustal growth is ascribed to amalgamation of differentiated magmatic rocks at continental margins. Here we show that chemical weathering of Ni- and Cr-rich, undifferentiated ultramafic rock equivalent to ~1.3 wt% of today’s continental crust compensates for low Ni and Cr in formation models of the continental crust. Ultramafic rock weathering produces a residual that is enriched in Ni and also silica. In the light of potentially large volumes of ultramafic rock and high atmospheric CO2 concentrations during the Archean, chemical weathering must therefore have played a major role in forming compositionally evolved components of the early Earth’s crust. The concentration of Ni and Cr of the continental crust cannot be explained by formation models involving differentiated magmatic rocks. Here, the authors show that hydrothermal alteration and chemical weathering of ultramafic rock compensates for the low Ni and Cr concentrations of island arc-type magmatic rocks.
Collapse
|
5
|
Diversity of burial rates in convergent settings decreased as Earth aged. Sci Rep 2016; 6:26359. [PMID: 27216133 PMCID: PMC4877656 DOI: 10.1038/srep26359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/26/2016] [Indexed: 11/08/2022] Open
Abstract
The evolution and the growth of the continental crust is inextricably linked to the evolution of Earth's geodynamic processes. The detrital zircon record within the continental crust, as well as the isotopic composition of this crust, indicates that the amount of juvenile felsic material decreased with time and that in geologically recent times, the generation of new crust is balanced by recycling of the crust back into the mantle within subduction zones. However it cannot always have been so; yet the nature of the crust and the processes of crustal reworking in the Precambrian Earth are not well constrained. Here we use both detrital zircon ages and metamorphic pressure-temperature-time (P-T-t) information from metasedimentary units deposited in proposed convergent settings from Archaean, Proterozoic and Phanerozoic terrains to characterize the evolution of minimum estimates of burial rate (km.Ma(-1)) as a function of the age of the rocks. The demonstrated decrease in burial rate correlates positively with a progressive decrease in the production of juvenile felsic crust in the Archaean and Proterozoic. Burial rates are also more diverse in the Archaean than in modern times. We interpret these features to reflect a progressive decrease in the diversity of tectonic processes from Archaean to present, coupled with the emergence of the uniquely Phanerozoic modern-style collision.
Collapse
|
6
|
Abstract
AbstractThe strong resilience of the mineral zircon and its ability to host a wealth of isotopic information make it the best deep-time archive of Earth's continental crust. Zircon is found in most felsic igneous rocks, can be precisely dated and can fingerprint magmatic sources; thus, it has been widely used to document the formation and evolution of continental crust, from pluton- to global-scale. Here, we present a review of major contributions that zircon studies have made in terms of understanding key questions involving the formation of the continents. These include the conditions of continent formation on early Earth, the onset of plate tectonics and subduction, the rate of crustal growth through time and the governing balance of continental addition v. continental loss, and the role of preservation bias in the zircon record.Supplementary material:A compilation used in this study of previously published detrital zircon U-Pb-Hf isotope data are available at http://www.geolsoc.org.uk/SUP18791
Collapse
Affiliation(s)
- Nick M. W. Roberts
- NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
| | - Christopher J. Spencer
- NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
| |
Collapse
|
7
|
Cawood PA, Hawkesworth CJ. Temporal relations between mineral deposits and global tectonic cycles. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp393.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractMineral deposits are heterogeneously distributed in both space and time, with variations reflecting tectonic setting, evolving environmental conditions, as in the atmosphere and hydrosphere, and secular changes in the Earth's thermal history. The distribution of deposit types whose settings are tied to plate margin processes (e.g. orogenic gold, volcanic-hosted massive sulphide, Mississippi valley type Pb–Zn deposits) correlates well with the supercontinent cycle, whereas deposits related to intra-cratonic settings and mantle-driven igneous events, such as Ni–Cu–PGE deposits, lack a clear association. The episodic distribution of deposits tied to the supercontinent cycle is accentuated by selective preservation and biasing of rock units and events during supercontinent assembly, a process that encases the deposit within the assembled supercontinent and isolates it from subsequent removal and recycling at plate margins.
Collapse
Affiliation(s)
- Peter A. Cawood
- Department of Earth Sciences, University of St Andrews, Irvine Building, North Street, St Andrews, Fife KY16 9AL, UK
- Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chris J. Hawkesworth
- Department of Earth Sciences, University of St Andrews, Irvine Building, North Street, St Andrews, Fife KY16 9AL, UK
| |
Collapse
|
8
|
Preservation and Recycling of Crust during Accretionary and Collisional Phases of Proterozoic Orogens: A Bumpy Road from Nuna to Rodinia. GEOSCIENCES 2013. [DOI: 10.3390/geosciences3020240] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD. A change in the geodynamics of continental growth 3 billion years ago. Science 2012; 335:1334-6. [PMID: 22422979 DOI: 10.1126/science.1216066] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth's history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics.
Collapse
Affiliation(s)
- Bruno Dhuime
- Department of Earth Sciences, University of St. Andrews, St. Andrews, UK.
| | | | | | | |
Collapse
|
10
|
Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF. Accretionary orogens through Earth history. ACTA ACUST UNITED AC 2009. [DOI: 10.1144/sp318.1] [Citation(s) in RCA: 570] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAccretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero.
Collapse
Affiliation(s)
- Peter A. Cawood
- School of Earth and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Alfred Kröner
- Institut für Geowissenschaften, Universität Mainz, 55099 Mainz, Germany
| | - William J. Collins
- School of Earth Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - Timothy M. Kusky
- Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, MO 63103, USA
| | - Walter D. Mooney
- US Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA
| | - Brian F. Windley
- Department of Geology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|