1
|
Pates S, Ma J, Wu Y, Fu D. Impact of ontogeny and spines on the hydrodynamic performance of the Cambrian arthropod Isoxys. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240894. [PMID: 39677541 PMCID: PMC11641431 DOI: 10.1098/rsos.240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 12/17/2024]
Abstract
A metazoan-dominated biological pump was established early in the Phanerozoic, a time that saw the evolution of the first pelagic euarthropod zooplankton such as some species of the Cambrian bivalved euarthropod Isoxys. Pelagic groups evolved from benthic stock, in many cases through neoteny and retention of characteristics from planktic larval stages. However, Isoxys brooded eggs and did not have a planktic larval stage, precluding this route into the pelagic realm. Computational fluid dynamics was used to quantify hydrodynamic performance through the ontogeny of two hyperbenthic species of Isoxys, Isoxys auritus and Isoxys minor. Coefficients were used to quantify forces for different carapace shapes over a range of biologically relevant sizes and swimming speeds. Streamlining and lift generation were greater for later growth stages, a consequence of carapace asymmetry and elongated anterior and posterior spines. Simulations performed with anterior spines artificially removed demonstrate the importance of this feature for lift generation, with a minimal impact on drag. Elongated spines and faster swimming can also be considered anti-predatory, and the reduction of drag would have reduced the detectability of Isoxys to predators. Taken together, it is likely that pelagic Isoxys species evolved from benthic stock through the co-option of anti-predatory features.
Collapse
Affiliation(s)
- Stephen Pates
- Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, UK
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, PenrynTR10 9FE, UK
| | - Jiaxin Ma
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics, and Department of Geology, Northwest University, Xi’an710069, People’s Republic of China
| | - Yu Wu
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics, and Department of Geology, Northwest University, Xi’an710069, People’s Republic of China
- Institute of Earth Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Dongjing Fu
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics, and Department of Geology, Northwest University, Xi’an710069, People’s Republic of China
| |
Collapse
|
2
|
Fan L, Xu B, Chen S, Liu Y, Li F, Xie W, Prabhu A, Zou D, Wan R, Li H, Liu H, Liu Y, Kao SJ, Chen J, Zhu Y, Rinke C, Li M, Zhu M, Zhang C. Gene inversion led to the emergence of brackish archaeal heterotrophs in the aftermath of the Cryogenian Snowball Earth. PNAS NEXUS 2024; 3:pgae057. [PMID: 38380056 PMCID: PMC10877094 DOI: 10.1093/pnasnexus/pgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Land-ocean interactions greatly impact the evolution of coastal life on earth. However, the ancient geological forces and genetic mechanisms that shaped evolutionary adaptations and allowed microorganisms to inhabit coastal brackish waters remain largely unexplored. In this study, we infer the evolutionary trajectory of the ubiquitous heterotrophic archaea Poseidoniales (Marine Group II archaea) presently occurring across global aquatic habitats. Our results show that their brackish subgroups had a single origination, dated to over 600 million years ago, through the inversion of the magnesium transport gene corA that conferred osmotic-stress tolerance. The subsequent loss and gain of corA were followed by genome-wide adjustment, characterized by a general two-step mode of selection in microbial speciation. The coastal family of Poseidoniales showed a rapid increase in the evolutionary rate during and in the aftermath of the Cryogenian Snowball Earth (∼700 million years ago), possibly in response to the enhanced phosphorus supply and the rise of algae. Our study highlights the close interplay between genetic changes and ecosystem evolution that boosted microbial diversification in the Neoproterozoic continental margins, where the Cambrian explosion of animals soon followed.
Collapse
Affiliation(s)
- Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Bu Xu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Fuyan Li
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Apoorva Prabhu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ru Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Haodong Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuhang Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai 200062, China
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Maoyan Zhu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
- Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
3
|
Park TYS, Nielsen ML, Parry LA, Sørensen MV, Lee M, Kihm JH, Ahn I, Park C, de Vivo G, Smith MP, Harper DAT, Nielsen AT, Vinther J. A giant stem-group chaetognath. SCIENCE ADVANCES 2024; 10:eadi6678. [PMID: 38170772 PMCID: PMC10796117 DOI: 10.1126/sciadv.adi6678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Chaetognaths, with their characteristic grasping spines, are the oldest known pelagic predators, found in the lowest Cambrian (Terreneuvian). Here, we describe a large stem chaetognath, Timorebestia koprii gen. et sp. nov., from the lower Cambrian Sirius Passet Lagerstätte, which exhibits lateral and caudal fins, a distinct head region with long antennae and a jaw apparatus similar to Amiskwia sagittiformis. Amiskwia has previously been interpreted as a total-group chaetognathiferan, as either a stem-chaetognath or gnathostomulid. We show that T. koprii shares a ventral ganglion with chaetognaths to the exclusion of other animal groups, firmly placing these fossils on the chaetognath stem. The large size (up to 30 cm) and gut contents in T. koprii suggest that early chaetognaths occupied a higher trophic position in pelagic food chains than today.
Collapse
Affiliation(s)
- Tae-Yoon S. Park
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Morten Lunde Nielsen
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
- School of Earth Sciences, Palaeobiology Research Group, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- British Geological Survey, Nicker Hill, Keyworth NG12 5GG, UK
| | - Luke A. Parry
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | | | - Mirinae Lee
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Ji-Hoon Kihm
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Inhye Ahn
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Changkun Park
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Giacinto de Vivo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - M. Paul Smith
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - David A. T. Harper
- Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
| | - Arne T. Nielsen
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, Copenhagen DK-1350, Denmark
| | - Jakob Vinther
- School of Earth Sciences, Palaeobiology Research Group, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Sperling EA, Boag TH, Duncan MI, Endriga CR, Marquez JA, Mills DB, Monarrez PM, Sclafani JA, Stockey RG, Payne JL. Breathless through Time: Oxygen and Animals across Earth's History. THE BIOLOGICAL BULLETIN 2022; 243:184-206. [PMID: 36548971 DOI: 10.1086/721754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth's history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean deoxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions-massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.
Collapse
|
5
|
Emmings JF, Poulton SW, Walsh J, Leeming KA, Ross I, Peters SE. Pyrite mega-analysis reveals modes of anoxia through geological time. SCIENCE ADVANCES 2022; 8:eabj5687. [PMID: 35294245 PMCID: PMC8926349 DOI: 10.1126/sciadv.abj5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The redox structure of the water column in anoxic basins through geological time remains poorly resolved despite its importance to biological evolution/extinction and biogeochemical cycling. Here, we provide a temporal record of bottom and pore water redox conditions by analyzing the temporal distribution and chemistry of sedimentary pyrite. We combine machine-reading techniques, applied over a large library of published literature, with statistical analysis of element concentrations in databases of sedimentary pyrite and bulk sedimentary rocks to generate a scaled analysis spanning the majority of Earth's history. This analysis delineates the prevalent anoxic basin states from the Archaean to present day, which are associated with diagnostic combinations of five types of syngenetic pyrite. The underlying driver(s) for the pyrite types are unresolved but plausibly includes the ambient seawater inventory, precipitation kinetics, and the (co)location of organic matter degradation coupled to sulfate reduction, iron (oxyhydr)oxide dissolution, and pyrite precipitation.
Collapse
Affiliation(s)
- Joseph F. Emmings
- British Geological Survey, Keyworth, Nottingham NG12
5GG, UK
- School of Geography, Geology and the Environment,
University of Leicester, Leicester LE1 7RH, UK
| | - Simon W. Poulton
- School of Earth and Environment, University of Leeds,
Leeds LS2 9JT, UK
| | - Joanna Walsh
- Lyell Centre, British Geological Survey, Riccarton,
Edinburgh EH14 4AS, UK
- Ordnance Survey, Explorer House, Adanac Drive,
Southampton SO16 0AS, UK
| | | | - Ian Ross
- Department of Computer Sciences, University of
Wisconsin–Madison, Madison, WI 53706, USA
| | - Shanan E. Peters
- Department of Geoscience, University of
Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Pates S, Daley AC, Legg DA, Rahman IA. Vertically migrating Isoxys and the early Cambrian biological pump. Proc Biol Sci 2021; 288:20210464. [PMID: 34157876 PMCID: PMC8220267 DOI: 10.1098/rspb.2021.0464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological pump is crucial for transporting nutrients fixed by surface-dwelling primary producers to demersal animal communities. Indeed, the establishment of an efficient biological pump was likely a key factor enabling the diversification of animals over 500 Myr ago during the Cambrian explosion. The modern biological pump operates through two main vectors: the passive sinking of aggregates of organic matter, and the active vertical migration of animals. The coevolution of eukaryotes and sinking aggregates is well understood for the Proterozoic and Cambrian; however, little attention has been paid to the establishment of the vertical migration of animals. Here we investigate the morphological variation and hydrodynamic performance of the Cambrian euarthropod Isoxys. We combine elliptical Fourier analysis of carapace shape with computational fluid dynamics simulations to demonstrate that Isoxys species likely occupied a variety of niches in Cambrian oceans, including vertical migrants, providing the first quantitative evidence that some Cambrian animals were adapted for vertical movement in the water column. Vertical migration was one of several early Cambrian metazoan innovations that led to the biological pump taking on a modern-style architecture over 500 Myr ago.
Collapse
Affiliation(s)
- Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - David A Legg
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Imran A Rahman
- Oxford University Museum of Natural History, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Mitchell EG, Bobkov N, Bykova N, Dhungana A, Kolesnikov AV, Hogarth IRP, Liu AG, Mustill TMR, Sozonov N, Rogov VI, Xiao S, Grazhdankin DV. The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus 2020; 10:20190109. [PMID: 32642052 DOI: 10.1098/rsfs.2019.0109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 11/12/2022] Open
Abstract
The broad-scale environment plays a substantial role in shaping modern marine ecosystems, but the degree to which palaeocommunities were influenced by their environment is unclear. To investigate how broad-scale environment influenced the community ecology of early animal ecosystems, we employed spatial point process analyses (SPPA) to examine the community structure of seven late Ediacaran (558-550 Ma) bedding-plane assemblages drawn from a range of environmental settings and global localities. The studied palaeocommunities exhibit marked differences in the response of their component taxa to sub-metre-scale habitat heterogeneities on the seafloor. Shallow-marine (nearshore) palaeocommunities were heavily influenced by local habitat heterogeneities, in contrast to their deeper-water counterparts. The local patchiness within shallow-water communities may have been further accentuated by the presence of grazers and detritivores, whose behaviours potentially initiated a propagation of increasing habitat heterogeneity of benthic communities from shallow to deep-marine depositional environments. Higher species richness in shallow-water Ediacaran assemblages compared to deep-water counterparts across the studied time-interval could have been driven by this environmental patchiness, because habitat heterogeneities increase species richness in modern marine environments. Our results provide quantitative support for the 'Savannah' hypothesis for early animal diversification-whereby Ediacaran diversification was driven by patchiness in the local benthic environment.
Collapse
Affiliation(s)
- Emily G Mitchell
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nikolai Bobkov
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Novosibirsk, Novosibirsk Oblast 630090, Russian Federation
| | - Natalia Bykova
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Alavya Dhungana
- Department of Earth Sciences, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Anton V Kolesnikov
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Geological Institute, Russian Academy of Sciences, Pygevsky 7, Moscow 119017, Russia.,Faculty of Geography, Moscow State Pedagogical University, Kibalchicha str. 16, Moscow 129626, Russia
| | - Ian R P Hogarth
- Department of Chemical Engineering, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Alexander G Liu
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Tom M R Mustill
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Nikita Sozonov
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Novosibirsk, Novosibirsk Oblast 630090, Russian Federation
| | - Vladimir I Rogov
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dmitriy V Grazhdankin
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Novosibirsk, Novosibirsk Oblast 630090, Russian Federation
| |
Collapse
|
8
|
1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proc Natl Acad Sci U S A 2018; 115:E6978-E6986. [PMID: 29987033 DOI: 10.1073/pnas.1803866115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The average cell size of marine phytoplankton is critical for the flow of energy and nutrients from the base of the food web to higher trophic levels. Thus, the evolutionary succession of primary producers through Earth's history is important for our understanding of the radiation of modern protists ∼800 million years ago and the emergence of eumetazoan animals ∼200 million years later. Currently, it is difficult to establish connections between primary production and the proliferation of large and complex organisms because the mid-Proterozoic (∼1,800-800 million years ago) rock record is nearly devoid of recognizable phytoplankton fossils. We report the discovery of intact porphyrins, the molecular fossils of chlorophylls, from 1,100-million-year-old marine black shales of the Taoudeni Basin (Mauritania), 600 million years older than previous findings. The porphyrin nitrogen isotopes (δ15Npor = 5.6-10.2‰) are heavier than in younger sedimentary sequences, and the isotopic offset between sedimentary bulk nitrogen and porphyrins (εpor = -5.1 to -0.5‰) points to cyanobacteria as dominant primary producers. Based on fossil carotenoids, anoxygenic green (Chlorobiacea) and purple sulfur bacteria (Chromatiaceae) also contributed to photosynthate. The low εpor values, in combination with a lack of diagnostic eukaryotic steranes in the time interval of 1,600-1,000 million years ago, demonstrate that algae played an insignificant role in mid-Proterozoic oceans. The paucity of algae and the small cell size of bacterial phytoplankton may have curtailed the flow of energy to higher trophic levels, potentially contributing to a diminished evolutionary pace toward complex eukaryotic ecosystems and large and active organisms.
Collapse
|
9
|
The transition from a cyanobacterial to algal world and the emergence of animals. Emerg Top Life Sci 2018; 2:181-190. [PMID: 32412625 DOI: 10.1042/etls20180039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
The Neoproterozoic, 1000-541 million years (Myr) ago, saw the transition from a largely bacterial world to the emergence of multicellular grazers, suspension feeders and predators. This article explores the hypothesis that the first appearance of large, multicellular heterotrophs was fueled by an elevated supply of nutrients and carbon from the bottom of the food chain to higher trophic levels. A refined record of molecular fossils of algal sterols reveals that the transition from dominantly bacterial to eukaryotic primary production in open marine habitat occurred between 659 and 645 Myr ago, in the hot interlude between two Snowball Earth glaciations. This bacterial-eukaryotic transition reveals three characteristics: it was rapid on geological timescales, it followed an extreme environmental catastrophe and it was permanent - hallmarks of an ecological hysteresis that shifted Earth's oceans between two self-stabilizing steady states. More than 50 million years of Snowball glaciations and their hot aftermath may have purged old-world bacterial phytoplankton, providing empty but nutrient-rich ecospace for recolonization by larger algae and transforming the base of the food web. Elevated average and maximum particle sizes at the base of the food chain may have provided more efficient energy and nutrient transfer to higher trophic levels, fueling an arms race toward larger grazers, predators and prey, and the development of increasingly complex feeding and defense strategies.
Collapse
|
10
|
Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 2017; 548:578-581. [DOI: 10.1038/nature23457] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/03/2017] [Indexed: 02/01/2023]
|
11
|
Bowyer F, Wood RA, Poulton SW. Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. GEOBIOLOGY 2017; 15:516-551. [PMID: 28387043 PMCID: PMC5485040 DOI: 10.1111/gbi.12232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/25/2017] [Indexed: 05/26/2023]
Abstract
A growing number of detailed geochemical studies of Ediacaran (635-541 Ma) marine successions have provided snapshots into the redox environments that played host to the earliest known metazoans. Whilst previous compilations have focused on the global evolution of Ediacaran water column redox chemistry, the inherent heterogeneity evident in palaeogeographically distinct environments demands a more dissected approach to better understand the nature, interactions and evolution of extrinsic controls on the development of early macrobenthic ecosystems. Here, we review available data of local-scale redox conditions within a palaeogeographic and sequence stratigraphic framework, to explore the mechanisms controlling water column redox conditions and their potential impact on the record of metazoans. The openly connected Laurentian margin, North America (632-540 Ma) and Nama basin, Namibia (550-538 Ma), and the variably restricted Yangtze Block, South China (635-520 Ma), show continued redox instability after the first fossil evidence for metazoans. This may support opportunistic benthic colonisation during periods of transient oxygenation amidst episodic upwelling of anoxic waters beneath a very shallow, fluctuating chemocline. The first skeletal metazoans appeared under conditions of continued redox stratification, such as those which characterise the Dengying Formation of the Yangtze Block and the Kuibis Subgroup of the Nama basin. Current data, however, suggests that successful metazoan reef-building demanded more persistent oxia. We propose that cratonic positioning and migration throughout the Ediacaran Period, in combination with gradually increasing dissolved oxygen loading, may have provided a first-order control on redox evolution through regulating circulation mechanisms in the Mirovian Ocean. Some unrestricted lower slope environments from mid-high latitudes benefited from sustained oxygenation via downwelling, whilst transit of isolated cratons towards more equatorial positions stifled pervasive ventilation either through ineffective surface ocean mixing, Ekman-induced upwelling, elevated surface ocean productivity or a combination of these processes.
Collapse
Affiliation(s)
- F Bowyer
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - R A Wood
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - S W Poulton
- School of Earth and Environment, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
Cunningham JA, Vargas K, Pengju L, Belivanova V, Marone F, Martínez-Pérez C, Guizar-Sicairos M, Holler M, Bengtson S, Donoghue PCJ. Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng'an Doushantuo biota. Proc Biol Sci 2016; 282:20151169. [PMID: 26180072 PMCID: PMC4528530 DOI: 10.1098/rspb.2015.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular clock analyses estimate that crown-group animals began diversifying hundreds of millions of years before the start of the Cambrian period. However, the fossil record has not yielded unequivocal evidence for animals during this interval. Some of the most promising candidates for Precambrian animals occur in the Weng'an biota of South China, including a suite of tubular fossils assigned to Sinocyclocyclicus, Ramitubus, Crassitubus and Quadratitubus, that have been interpreted as soft-bodied eumetazoans comparable to tabulate corals. Here, we present new insights into the anatomy, original composition and phylogenetic affinities of these taxa based on data from synchrotron radiation X-ray tomographic microscopy, ptychographic nanotomography, scanning electron microscopy and electron probe microanalysis. The patterns of deformation observed suggest that the cross walls of Sinocyclocyclicus and Quadratitubus were more rigid than those of Ramitubus and Crassitubus. Ramitubus and Crassitubus specimens preserve enigmatic cellular clusters at terminal positions in the tubes. Specimens of Sinocyclocyclicus and Ramitubus have biological features that might be cellular tissue or subcellular structures filling the spaces between the cross walls. These observations are incompatible with a cnidarian interpretation, in which the spaces between cross walls are abandoned parts of the former living positions of the polyp. The affinity of the Weng'an tubular fossils may lie within the algae.
Collapse
Affiliation(s)
- John A Cunningham
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Kelly Vargas
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Liu Pengju
- Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, People's Republic of China
| | - Veneta Belivanova
- Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Carlos Martínez-Pérez
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK Department of Geology, University of Valencia, C/Dr. Moliner 50, Burjassot, Valencia 46100, Spain
| | | | - Mirko Holler
- Swiss Light Source, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Stefan Bengtson
- Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
13
|
|
14
|
Animals and the invention of the Phanerozoic Earth system. Trends Ecol Evol 2011; 26:81-7. [DOI: 10.1016/j.tree.2010.11.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/26/2010] [Accepted: 11/29/2010] [Indexed: 11/17/2022]
|