Sun RT, Han W, Chang HL, Shaw MJ. Motivating Adherence to Exercise Plans Through a Personalized Mobile Health App: Enhanced Action Design Research Approach.
JMIR Mhealth Uhealth 2021;
9:e19941. [PMID:
34076580 PMCID:
PMC8209532 DOI:
10.2196/19941]
[Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/12/2021] [Accepted: 04/04/2021] [Indexed: 11/15/2022] Open
Abstract
Background
Physical inactivity is a global issue that affects people’s health and productivity. With the advancement of mobile technologies, many apps have been developed to facilitate health self-management. However, few studies have examined the effectiveness of these mobile health (mHealth) apps in motivating exercise adherence.
Objective
This study aims to demonstrate the enhanced action design research (ADR) process and improve the design of mHealth apps for exercise self-management. Specifically, we investigate whether sending motivational messages improves adherence to exercise plans, whether the motivational effect is affected by personality, the impact of message type and repetition, and the process of involving a field experiment in the design process and learning new design principles from the results.
Methods
This formative research was conducted by proposing an enhanced ADR process. We incorporated a field experiment into the process to iteratively refine and evaluate the design until it converges into a final mHealth app. We used the Apple ResearchKit to develop the mHealth app and promoted it via trainers at their gyms. We targeted users who used the app for at least two months. Participants were randomly assigned to 1 of the 12 groups in a 2×3×2 factorial design and remained blinded to the assigned intervention. The groups were defined based on personality type (thinking or feeling), message type (emotional, logical, or none), and repetition (none or once). Participants with different personality types received tailored and repeated messages. Finally, we used the self-reported completion rate to measure participants’ adherence level to exercise plans. By analyzing users’ usage patterns, we could verify, correct, and enhance the mHealth app design principles.
Results
In total, 160 users downloaded the app, and 89 active participants remained during the 2-month period. The results suggest a significant main effect of personality type and repetition and a significant interaction effect between personality type and repetition. The adherence rate of people with feeling personality types was 18.15% higher than that of people with thinking types. Emotional messages were more effective than logical messages in motivating exercise adherence. Although people received repeated messages, they were more likely to adhere to exercise plans. With repeated reminders, the adherence rates of people with thinking personality types were significantly improved by 27.34% (P<.001).
Conclusions
This study contributes to the literature on mHealth apps. By incorporating a field experiment into the ADR process, we demonstrate the benefit of combining design science and field experiments. This study also contributes to the research on mHealth apps. The principles learned from this study can be applied to improve the effectiveness of mHealth apps. The app design can be considered a foundation for the development of more advanced apps for specific diseases, such as diabetes and asthma, in future research.
Collapse