1
|
Elsayed M, Bodo L, Gaoiran C, Keuhnelian P, Dosajh A, Luk V, Schwandt M, French JL, Ghosh A, Erickson B, Charlesworth AG, Millman J, Wheeler AR. Toward Analysis at the Point of Need: A Digital Microfluidic Approach to Processing Multi-Source Sexual Assault Samples. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405712. [PMID: 39230280 PMCID: PMC11538644 DOI: 10.1002/advs.202405712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Forensic case samples collected in sexual assaults typically contain DNA from multiple sources, which complicates short-tandem repeat (STR) profiling. These samples are typically sent to a laboratory to separate the DNA from sperm and non-sperm sources prior to analysis. Here, the automation and miniaturization of these steps using digital microfluidics (DMF) is reported, which may eventually enable processing sexual assault samples outside of the laboratory, at the point of need. When applied to vaginal swab samples collected up to 12 h post-coitus (PC), the new method identifies single-source (male) STR profiles. When applied to samples collected 24-72 h PC, the method identifies mixed STR profiles, suggesting room for improvement and/or potential for data deconvolution. In sum, an automated, miniaturized sample pre-processing method for separating the DNA contained in sexual assault samples is demonstrated. This type of automated processing using DMF, especially when combined with Rapid DNA Analysis, has the potential to be used for processing of sexual assault samples in hospitals, police offices, and other locations outside of the laboratory.
Collapse
Affiliation(s)
- Mohamed Elsayed
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3E2Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Department of ChemistryUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
| | - Leticia Bodo
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Department of ChemistryUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
| | - Christine Gaoiran
- Forensic Science DepartmentUniversity of Toronto Mississauga4th floor, Terrence Donnelly Health Sciences Complex, 3359 Mississauga Rd.MississaugaONL5L 1C6Canada
| | - Palig Keuhnelian
- Forensic Science DepartmentUniversity of Toronto Mississauga4th floor, Terrence Donnelly Health Sciences Complex, 3359 Mississauga Rd.MississaugaONL5L 1C6Canada
| | - Advikaa Dosajh
- Forensic Science DepartmentUniversity of Toronto Mississauga4th floor, Terrence Donnelly Health Sciences Complex, 3359 Mississauga Rd.MississaugaONL5L 1C6Canada
| | - Vivienne Luk
- Forensic Science DepartmentUniversity of Toronto Mississauga4th floor, Terrence Donnelly Health Sciences Complex, 3359 Mississauga Rd.MississaugaONL5L 1C6Canada
| | - Melissa Schwandt
- ANDE Corporation1860 Industrial Circle, Suite ALongmontCO80501USA
| | - Julie L. French
- ANDE Corporation1860 Industrial Circle, Suite ALongmontCO80501USA
| | - Alpana Ghosh
- Centre of Forensic Sciences25 Morton Shulman AvenueTorontoONM3M 0B1Canada
| | - Barbara Erickson
- Centre of Forensic Sciences25 Morton Shulman AvenueTorontoONM3M 0B1Canada
| | | | - Jonathan Millman
- Centre of Forensic Sciences25 Morton Shulman AvenueTorontoONM3M 0B1Canada
| | - Aaron R. Wheeler
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3E2Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Department of ChemistryUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
| |
Collapse
|
2
|
Liu KZ, Tian G, Ko ACT, Geissler M, Malic L, Moon BU, Clime L, Veres T. Microfluidic methods for the diagnosis of acute respiratory tract infections. Analyst 2024. [PMID: 39440426 DOI: 10.1039/d4an00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory tract infections (ARTIs) are caused by sporadic or pandemic outbreaks of viral or bacterial pathogens, and continue to be a considerable socioeconomic burden for both developing and industrialized countries alike. Diagnostic methods and technologies serving as the cornerstone for disease management, epidemiological tracking, and public health interventions are evolving continuously to keep up with the demand for higher sensitivity, specificity and analytical throughput. Microfluidics is becoming a key technology in these developments as it allows for integrating, miniaturizing and automating bioanalytical assays at an unprecedented scale, reducing sample and reagent consumption and improving diagnostic performance in terms of sensitivity, throughput and response time. In this article, we describe relevant ARTIs-pneumonia, influenza, severe acute respiratory syndrome, and coronavirus disease 2019-along with their pathogenesis. We provide a summary of established methods for disease diagnosis, involving nucleic acid amplification techniques, antigen detection, serological testing as well as microbial culture. This is followed by a short introduction to microfluidics and how flow is governed at low volume and reduced scale using centrifugation, pneumatic pumping, electrowetting, capillary action, and propagation in porous media through wicking, for each of these principles impacts the design, functioning and performance of diagnostic tools in a particular way. We briefly cover commercial instruments that employ microfluidics for use in both laboratory and point-of-care settings. The main part of the article is dedicated to emerging methods deriving from the use of miniaturized, microfluidic systems for ARTI diagnosis. Finally, we share our thoughts on future perspectives and the challenges associated with validation, approval, and adaptation of microfluidic-based systems.
Collapse
Affiliation(s)
- Kan-Zhi Liu
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Ganghong Tian
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Alex C-T Ko
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Matthias Geissler
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Byeong-Ui Moon
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Liviu Clime
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
3
|
Velasco LG, Rocha DS, de Campos RPS, Coltro WKT. Integration of paper-based analytical devices with digital microfluidics for colorimetric detection of creatinine. Analyst 2024. [PMID: 39417394 DOI: 10.1039/d4an00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Digital microfluidics (DMF) is a platform that enables the automated manipulation of individual droplets of sizes ranging from nanoliter to microliter and can be coupled with numerous techniques, including colorimetry. However, although the DMF electrode architecture is highly versatile, its integration with different analytical methods often requires either changes in sample access, top plate design, or the integration of supplementary equipment into the system. As an alternative to overcome these challenges, this study proposes a simple integration between paper-based analytical devices (PADs) and DMF for automated and eco-friendly sample processing aiming at the colorimetric detection of creatinine (CR, an important biomarker for kidney disease) in artificial urine. An optimized and selective Jaffé reaction was performed on the device, and the reaction products were delivered to the PAD, which was subsequently analyzed with a bench scanner. The optimal operational parameters on the DMF platform were a reaction time of 45 s with circular mixing and image capture after 5 min. Under optimized conditions, a linear behavior was obtained for creatinine concentrations ranging from 2 to 32 mg dL-1, with limits of detection and quantitation equal to 1.4 mg dL-1 and 2.0 mg dL-1, respectively. For the concentration range tested, the relative standard deviation varied from 2.5 to 11.0%, considering four measurements per concentration. CR-spiked synthetic urine samples were subjected to analysis via DMF-PAD and the spectrophotometric reference method. The concentrations of CR determined using both analytical techniques were close to the theoretical values, with the resultant standard deviations of 2-9% and 1-4% for DMF-PADs and spectrophotometry, respectively. Furthermore, the recovery values were within the acceptable range, with DMF-PADs yielding 96-108% and spectrophotometry producing 95-102%. Finally, the greenness of the DMF-PAD and spectrophotometry methods was evaluated using the Analytical Greenness (AGREE) metric software, in which 0.71 and 0.51 scores were obtained, respectively. This indicates that the proposed method presents a higher greenness level, mainly due to its miniaturized characteristics using a smaller volume of reagent and sample and the possibility of automation, thus reducing user exposure to potentially toxic substances. Therefore, the DMF-PADs demonstrated great potential for application in the clinical analysis of creatinine, aiding in routine tests by introducing an automated, simple, and environmentally friendly process.
Collapse
Affiliation(s)
- Larissa G Velasco
- Instituto de Química, Universidade Federal de Goiás - UFG, 74690-900, Goiânia, GO, Brazil
| | - Danielly S Rocha
- Instituto de Química, Universidade Federal de Goiás - UFG, 74690-900, Goiânia, GO, Brazil
| | - Richard P S de Campos
- Nanotechnology Research Centre, National Research Council of Canada, Edmonton, AB, Canada
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás - UFG, 74690-900, Goiânia, GO, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Jia Z, Chang C, Hu S, Li J, Ge M, Dong W, Ma H. Artificial intelligence-enabled multipurpose smart detection in active-matrix electrowetting-on-dielectric digital microfluidics. MICROSYSTEMS & NANOENGINEERING 2024; 10:139. [PMID: 39327430 PMCID: PMC11427566 DOI: 10.1038/s41378-024-00765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 09/28/2024]
Abstract
An active-matrix electrowetting-on-dielectric (AM-EWOD) system integrates hundreds of thousands of active electrodes for sample droplet manipulation, which can enable simultaneous, automatic, and parallel on-chip biochemical reactions. A smart detection system is essential for ensuring a fully automatic workflow and online programming for the subsequent experimental steps. In this work, we demonstrated an artificial intelligence (AI)-enabled multipurpose smart detection method in an AM-EWOD system for different tasks. We employed the U-Net model to quantitatively evaluate the uniformity of the applied droplet-splitting methods. We used the YOLOv8 model to monitor the droplet-splitting process online. A 97.76% splitting success rate was observed with 18 different AM-EWOD chips. A 99.982% model precision rate and a 99.980% model recall rate were manually verified. We employed an improved YOLOv8 model to detect single-cell samples in nanolitre droplets. Compared with manual verification, the model achieved 99.260% and 99.193% precision and recall rates, respectively. In addition, single-cell droplet sorting and routing experiments were demonstrated. With an AI-based smart detection system, AM-EWOD has shown great potential for use as a ubiquitous platform for implementing true lab-on-a-chip applications.
Collapse
Affiliation(s)
- Zhiqiang Jia
- College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun, Jilin Province, 130022, PR China
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Chunyu Chang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China
| | - Jiahao Li
- ACX Instruments Ltd, Cambridge, CB4 0WS, UK
| | - Mingfeng Ge
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China
| | - Wenfei Dong
- College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun, Jilin Province, 130022, PR China.
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, PR China.
- Guangdong ACXEL Micro & Nano Tech Co. Ltd, Foshan, Guangdong Province, 528000, PR China.
- ACX Instruments Ltd, Cambridge, CB4 0WS, UK.
| |
Collapse
|
5
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
6
|
Wang QL, Cho EH, Li J, Huang HC, Kin S, Piao Y, Xu L, Tang K, Kuiry S, He Z, Yu D, Cheng B, Wu CC, Choi C, Shin K, Ho TY, Kim CJC. Democratizing digital microfluidics by a cloud-based design and manufacturing platform. LAB ON A CHIP 2024; 24:4536-4548. [PMID: 39221473 DOI: 10.1039/d4lc00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Akin to the impact that digital microelectronics had on electronic devices for information technology, digital microfluidics (DMF) was anticipated to transform fluidic devices for lab-on-a-chip (LoC) applications. However, despite a wealth of research and publications, electrowetting-on-dielectric (EWOD) DMF has not achieved the anticipated wide adoption, and commercialization has been painfully slow. By identifying the technological and resource hurdles in developing DMF chip and control systems as the culprit, we envision democratizing DMF by building a standardized design and manufacturing platform. To achieve this vision, we introduce a proof-of-concept cloud platform that empowers any user to design, obtain, and operate DMF chips (https://edroplets.org). For chip design, we establish a web-based EWOD chip design platform with layout rules and automated wire routing. For chip manufacturing, we build a web-based EWOD chip manufacturing platform and fabricate four types of EWOD chips (i.e., glass, paper, PCB, and TFT) to demonstrate the foundry service workflow. For chip control, we introduce a compact EWOD control system along with web-based operating software. Although industrial fabrication services are beyond the scope of this work, we hope this perspective will inspire academic and commercial stakeholders to join the initiative toward a DMF ecosystem for the masses.
Collapse
Affiliation(s)
- Qining Leo Wang
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Eric Hyunsung Cho
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Jia Li
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Hsin-Chuan Huang
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sarath Kin
- Department of Chemistry, and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea
| | - Yuhao Piao
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Lin Xu
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | - Kenneth Tang
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Shounak Kuiry
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Zifan He
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Danning Yu
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Brian Cheng
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Chang-Chi Wu
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Connor Choi
- Computer Science Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Kwanwoo Shin
- Department of Chemistry, and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea
| | - Tsung-Yi Ho
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Chang-Jin Cj Kim
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA.
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Aggarwal D, de Campos RPS, Jemere AB, Bergren AJ, Pekas N. Integration of complementary split-ring resonators into digital microfluidics for manipulation and direct sensing of droplet composition. LAB ON A CHIP 2024; 24:4461-4469. [PMID: 39207247 DOI: 10.1039/d4lc00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This paper demonstrates the integration of complementary split-ring resonators (CSSRs) with digital microfluidics (DMF) sample manipulation for passive, on-chip radio-frequency (RF) sensing. Integration is accomplished by having the DMF and the RF-sensing components share the same ground plane: by designing the RF-resonant openings directly into the ground plane of a DMF device, both droplet motion and sensing are achieved, adding a new on-board detection mode for use in DMF. The system was modelled to determine basic features and to balance various factors that need to be optimized to maintain both functionalities (DMF-enabled droplet movement and RF detection) on the same chip. Simulated and experimental results show good agreement. Using a portable measurement setup, the integrated CSSR sensor was used to effectively identify a series of DMF-generated drops of ethanol-water mixtures of different compositions by measuring the resonant frequency of the CSSR. In addition, we show that a binary solvent system (ethanol/water mixtures) results in consistent changes in the measured spectrum in response to changes in concentration, indicating that the sensor can distinguish not only between pure solvents from each other, but also between mixtures of varied compositions. We anticipate that this system can be refined further to enable additional applications and detection modes for DMF systems and other portable sensing platforms alike. This proof-of-principle study demonstrates that the integrated DMF-CSSR sensor provides a new platform for monitoring and characterization of liquids with high sensitivity and low consumption of materials, and opens the way for new and exciting applications of RF sensing in microfluidics.
Collapse
Affiliation(s)
- Dipesh Aggarwal
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada.
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | | | - Abebaw B Jemere
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada.
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Adam Johan Bergren
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada.
- Department of Chemistry, University of British Columbia - Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Nikola Pekas
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9, Canada.
| |
Collapse
|
8
|
Huang D, Huang E, Cai D, Chen Z, Wen H, Wang Y, Ma D, Lu Y, Liu X, Liu D. Automated Droplet Ejection from a Digital Microfluidics Sample Pretreatment Device Enables Batch-Mode Chemiluminescence Immunoassay. Anal Chem 2024; 96:14433-14440. [PMID: 39103289 DOI: 10.1021/acs.analchem.4c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Digital microfluidics (DMF) features programmed manipulation of fluids in multiple steps, making it a valuable tool for sample pretreatment. However, the integration of sample pretreatment with its downstream reaction and detection requires transferring droplets from the DMF device to the outside world. To address this issue, the present study developed a modified DMF device that allows automated droplet ejection out of the chip, facilitated by a tailor-designed interface. A double-layered DMF microchip with an oil-filled medium was flipped over, with a liquid infusion port and a liquid expulsion port accommodated on the top working PCB plate and the bottom grounded ITO plate, respectively, to facilitate chip-to-world delivery of droplets. Using chemiluminescent immunoassay (CLIA) as an illustrative application, the sample pretreatment was programmed on the DMF device, and CLIA droplets were ejected from the chip for signal reading. In our workflow, CLIA droplets can be ejected from the DMF device through the chip-to-world interface, freeing up otherwise occupied electrodes for more sample pretreatment and enabling streamlined droplet microreactions and batch-mode operation for bioanalysis. Integrated with these interfacing portals, the DMF system achieved a single-channel throughput of 17 samples per hour, which can be further upscaled for more productive applications by parallelizing the DMF modules. The results of this study demonstrate that the droplet ejection function that is innovated in a DMF sample pretreatment microsystem can significantly improve analytical throughput, providing an approach to establishing an automated but decentralized biochemical sample preparation workstation for large-scale and continuous bioanalysis.
Collapse
Affiliation(s)
- Dezhi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Enqi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Dongyang Cai
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Hongting Wen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Dachuan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yao Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Xianming Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Dayu Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| |
Collapse
|
9
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
10
|
Steinbach MK, Leipert J, Matzanke T, Tholey A. Digital Microfluidics for Sample Preparation in Low-Input Proteomics. SMALL METHODS 2024:e2400495. [PMID: 39205538 DOI: 10.1002/smtd.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Low-input proteomics, also referred to as micro- or nanoproteomics, has become increasingly popular as it allows one to elucidate molecular processes in rare biological materials. A major prerequisite for the analytics of minute protein amounts, e.g., derived from low cell numbers, down to single cells, is the availability of efficient sample preparation methods. Digital microfluidics (DMF), a technology allowing the handling and manipulation of low liquid volumes, has recently been shown to be a powerful and versatile tool to address the challenges in low-input proteomics. Here, an overview is provided on recent advances in proteomics sample preparation using DMF. In particular, the capability of DMF to isolate proteomes from cells and small model organisms, and to perform all necessary chemical sample preparation steps, such as protein denaturation and proteolytic digestion on-chip, are highlighted. Additionally, major prerequisites to making these steps compatible with follow-up analytical methods such as liquid chromatography-mass spectrometry will be discussed.
Collapse
Affiliation(s)
- Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Theo Matzanke
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| |
Collapse
|
11
|
Thiem DB, Szabo G, Burg TP. Model-Based Optimization of Solid-Supported Micro-Hotplates for Microfluidic Cryofixation. MICROMACHINES 2024; 15:1069. [PMID: 39337729 PMCID: PMC11434347 DOI: 10.3390/mi15091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
Cryofixation by ultra-rapid freezing is widely regarded as the gold standard for preserving cell structure without artefacts for electron microscopy. However, conventional cryofixation technologies are not compatible with live imaging, making it difficult to capture dynamic cellular processes at a precise time. To overcome this limitation, we recently introduced a new technology, called microfluidic cryofixation. The principle is based on micro-hotplates counter-cooled with liquid nitrogen. While the power is on, the sample inside a foil-embedded microchannel on top of the micro-hotplate is kept warm. When the heater is turned off, the thermal energy is drained rapidly and the sample freezes. While this principle has been demonstrated experimentally with small samples (<0.5 mm2), there is an important trade-off between the attainable cooling rate, sample size, and heater power. Here, we elucidate these connections by theoretical modeling and by measurements. Our findings show that cooling rates of 106 K s-1, which are required for the vitrification of pure water, can theoretically be attained in samples up to ∼1 mm wide and 5 μm thick by using diamond substrates. If a heat sink made of silicon or copper is used, the maximum thickness for the same cooling rate is reduced to ∼3 μm. Importantly, cooling rates of 104 K s-1 to 105 K s-1 can theoretically be attained for samples of arbitrary area. Such rates are sufficient for many real biological samples due to the natural cryoprotective effect of the cytosol. Thus, we expect that the vitrification of millimeter-scale specimens with thicknesses in the 10 μm range should be possible using micro-hotplate-based microfluidic cryofixation technology.
Collapse
Affiliation(s)
- Daniel B. Thiem
- Integrated Micro-Nano-Systems Laboratory, Technische Universität Darmstadt, 64283 Darmstadt, Germany;
| | - Greta Szabo
- Integrated Micro-Nano-Systems Laboratory, Technische Universität Darmstadt, 64283 Darmstadt, Germany;
| | - Thomas P. Burg
- Integrated Micro-Nano-Systems Laboratory, Technische Universität Darmstadt, 64283 Darmstadt, Germany;
- Centre for Synthetic Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Li K, Lu X, Liao J, Chen H, Lin W, Zhao Y, Tang D, Li C, Tian Z, Zhu Z, Jiang H, Sun J, Zhang H, Yang C. DNA-DISK: Automated end-to-end data storage via enzymatic single-nucleotide DNA synthesis and sequencing on digital microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2410164121. [PMID: 39145927 PMCID: PMC11348301 DOI: 10.1073/pnas.2410164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024] Open
Abstract
In the age of information explosion, the exponential growth of digital data far exceeds the capacity of current mainstream storage media. DNA is emerging as a promising alternative due to its higher storage density, longer retention time, and lower power consumption. To date, commercially mature DNA synthesis and sequencing technologies allow for writing and reading of information on DNA with customization and convenience at the research level. However, under the disconnected and nonspecialized mode, DNA data storage encounters practical challenges, including susceptibility to errors, long storage latency, resource-intensive requirements, and elevated information security risks. Herein, we introduce a platform named DNA-DISK that seamlessly streamlined DNA synthesis, storage, and sequencing on digital microfluidics coupled with a tabletop device for automated end-to-end information storage. The single-nucleotide enzymatic DNA synthesis with biocapping strategy is utilized, offering an ecofriendly and cost-effective approach for data writing. A DNA encapsulation using thermo-responsive agarose is developed for on-chip solidification, not only eliminating data clutter but also preventing DNA degradation. Pyrosequencing is employed for in situ and accurate data reading. As a proof of concept, DNA-DISK successfully stored and retrieved a musical sheet file (228 bits) with lower write-to-read latency (4.4 min of latency per bit) as well as superior automation compared to other platforms, demonstrating its potential to evolve into a DNA Hard Disk Drive in the future.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Xiaoyun Lu
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Jiaqi Liao
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Wei Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Yuhan Zhao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Dongbao Tang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Congyu Li
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhenyang Tian
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Jun Sun
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| |
Collapse
|
13
|
Welch LG, Estranero J, Tourlomousis P, Wootton RCR, Radu V, González-Fernández C, Puchtler TJ, Murzeau CM, Dieckmann NMG, Shibahara A, Longbottom BW, Bryant CE, Talbot EL. A programmable and automated optical electrowetting-on-dielectric (oEWOD) driven platform for massively parallel and sequential processing of single cell assay operations. LAB ON A CHIP 2024; 24:3763-3774. [PMID: 39037291 DOI: 10.1039/d4lc00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recently, there has been an increasing emphasis on single cell profiling for high-throughput screening workflows in drug discovery and life sciences research. However, the biology underpinning these screens is often complex and is insufficiently addressed by singleplex assay screens. Traditional single cell screening technologies have created powerful sets of 'omic data that allow users to bioinformatically infer biological function, but have as of yet not empowered direct functional analysis at the level of each individual cell. Consequently, screening campaigns often require multiple secondary screens leading to laborious, time-consuming and expensive workflows in which attrition points may not be queried until late in the process. We describe a platform that harnesses droplet microfluidics and optical electrowetting-on-dielectric (oEWOD) to perform highly-controlled sequential and multiplexed single cell assays in massively parallelised workflows to enable complex cell profiling during screening. Soluble reagents or objects, such as cells or assay beads, are encapsulated into droplets of media in fluorous oil and are actively filtered based on size and optical features ensuring only desirable droplets (e.g. single cell droplets) are retained for analysis, thereby overcoming the Poisson probability distribution. Droplets are stored in an array on a temperature-controlled chip and the history of individual droplets is logged from the point of filter until completion of the workflow. On chip, droplets are subject to an automated and flexible suite of operations including the merging of sample droplets and the fluorescent acquisition of assay readouts to enable complex sequential assay workflows. To demonstrate the broad utility of the platform, we present examples of single-cell functional workflows for various applications such as antibody discovery, infectious disease, and cell and gene therapy.
Collapse
Affiliation(s)
- Lawrence G Welch
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Jasper Estranero
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | | | - Robert C R Wootton
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Valentin Radu
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | | | - Tim J Puchtler
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Claire M Murzeau
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Nele M G Dieckmann
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Aya Shibahara
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Brooke W Longbottom
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Emma L Talbot
- Lightcast Discovery Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| |
Collapse
|
14
|
Chen Y, Wang X, Na X, Zhang Y, Cai L, Song J, Yang C. DMF-DM-seq: Digital-Microfluidics Enabled Dual-Modality Sequencing of Single-Cell mRNA and microRNA with High Integration, Sensitivity, and Automation. Anal Chem 2024; 96:12916-12926. [PMID: 39038243 DOI: 10.1021/acs.analchem.4c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Multimodal measurement of single cells provides deep insights into the intricate relationships between individual molecular layers and the regulatory mechanisms underlying intercellular variations. Here, we reported DMF-DM-seq, a highly integrated, sensitive, and automated platform for single-cell mRNA and microRNA (miRNA) co-sequencing based on digital microfluidics. This platform first integrates the processes of single-cell isolation, lysis, component separation, and simultaneous sequencing library preparation of mRNA and miRNA within a single DMF device. Compared with the current half-cell measuring strategy, DMF-DM-seq enables complete separation of single-cell mRNA and miRNA via a magnetic field application, resulting in a higher miRNA detection ability. DMF-DM-seq revealed differential expression patterns of single cells of noncancerous breast cells and noninvasive and aggressive breast cancer cells at both mRNA and miRNA levels. The results demonstrated the anticorrelated relationship between miRNA and their mRNA targets. Further, we unravel the tumor growth and metastasis-associated biological processes enriched by miRNA-targeted genes, along with important miRNA-interaction networks involved in significant signaling pathways. We also deconstruct the miRNA regulatory mechanisms underlying different signaling pathways across different breast cell types. In summary, DMF-DM-seq offers a powerful tool for a comprehensive study of the expression heterogeneity of single-cell mRNA and miRNA, which will be widely applied in basic and clinical research.
Collapse
Affiliation(s)
- Yingwen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xuanqun Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Na
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkun Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Linfeng Cai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chaoyong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen 361003, China
| |
Collapse
|
15
|
Dong C, Li F, Sun Y, Long D, Chen C, Li M, Wei T, Martins RP, Chen T, Mak PI. A syndromic diagnostic assay on a macrochannel-to-digital microfluidic platform for automatic identification of multiple respiratory pathogens. LAB ON A CHIP 2024; 24:3850-3862. [PMID: 37961846 DOI: 10.1039/d3lc00728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The worldwide COVID-19 pandemic has changed people's lives and the diagnostic landscape. The nucleic acid amplification test (NAT) as the gold standard for SARS-CoV-2 detection has been applied in containing its transmission. However, there remains a lack of an affordable on-site detection system at resource-limited areas. In this study, a low cost "sample-in-answer-out" system incorporating nucleic acid extraction, purification, and amplification was developed on a single macrochannel-to-digital microfluidic chip. The macrochannel fluidic subsystem worked as a world-to-chip interface receiving 500-1000 μL raw samples, which then underwent bead-based extraction and purification processes before being delivered to DMF. Electrodes actuate an eluent dispensed to eight independent droplets for reverse transcription quantitative polymerase chain reaction (RT-qPCR). By reading with 4 florescence channels, the system can accommodate a maximum of 32 detection targets. To evaluate the proposed platform, a comprehensive assessment was conducted on the microfluidic chip as well as its functional components (i.e., extraction and amplification). The platform demonstrated a superior performance. In particular, using clinical specimens, the chip targeting SARS-CoV-2 and Flu A/B exhibited 100% agreement with off-chip diagnoses. Furthermore, the fabrication of chips is ready for scaled-up manufacturing and they are cost-effective for disposable use since they are assembled using a printed circuit board (PCB) and prefabricated blocks. Overall, the macrochannel-to-digital microfluidic platform coincides with the requirements of point-of-care testing (POCT) because of its advantages: low-cost, ease of use, comparable sensitivity and specificity, and availability for mass production.
Collapse
Affiliation(s)
- Cheng Dong
- School of Intelligent Systems Science and Engineering/JNU-Industry School of Artificial Intelligence, Jinan University, Zhuhai 519000, China
| | - Fei Li
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- Digifluidic Biotech Ltd., Zhuhai 519000, China.
| | - Yun Sun
- Digifluidic Biotech Ltd., Zhuhai 519000, China.
| | - Dongling Long
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519087, China
| | - Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, USA
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510640, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, 529080, China
| | - Rui P Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macau SAR, 999078, China.
| | | | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, Macau SAR, 999078, China.
- Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
16
|
Zhang T, Zhou P, Simon T, Cui T. Internal flow in sessile droplets induced by substrate oscillation: towards enhanced mixing and mass transfer in microfluidic systems. MICROSYSTEMS & NANOENGINEERING 2024; 10:86. [PMID: 38919162 PMCID: PMC11196738 DOI: 10.1038/s41378-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 06/27/2024]
Abstract
The introduction of flows within sessile droplets is highly effective for many lab-on-a-chip chemical and biomedical applications. However, generating such flows is difficult due to the typically small droplet volumes. Here, we present a simple, non-contact strategy to generate internal flows in sessile droplets for enhancing mixing and mass transport. The flows are driven by actuating a rigid substrate into oscillation with certain amplitude distributions without relying on the resonance of the droplet itself. Substrate oscillation characteristics and corresponding flow patterns are documented herein. Mixing indices and mass transfer coefficients of sessile droplets on the substrate surface are measured using optical and electrochemical methods. They demonstrate complete mixing within the droplets in 1.35 s and increases in mass transfer rates of more than seven times static values. Proof of concept was conducted with experiments of silver nanoparticle synthesis and with heavy metal ion sensing employing the sessile droplet as a microreactor for synthesis and an electrochemical cell for sensing. The degrees of enhancement of synthesis efficiency and detection sensitivity attributed to the internal flows are experimentally documented.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Peng Zhou
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Terrence Simon
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
17
|
Badr RGM, Hauer L, Vollmer D, Schmid F. Dynamics of Droplets Moving on Lubricated Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12368-12380. [PMID: 38834186 PMCID: PMC11192036 DOI: 10.1021/acs.langmuir.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Understanding the dynamics of drops on polymer-coated surfaces is crucial for optimizing applications such as self-cleaning materials or microfluidic devices. While the static and dynamic properties of deposited drops have been well characterized, a microscopic understanding of the underlying dynamics is missing. In particular, it is unclear how drop dynamics depends on the amount of uncross-linked chains in the brush, because experimental techniques fail to quantify those. Here we use coarse-grained simulations to study droplets moving on a lubricated polymer brush substrate under the influence of an external body force. The simulation model is based on the many body dissipative particle dynamics (MDPD) method and designed to mimic a system of water droplets on poly(dimethylsiloxane) (PDMS) brushes with chemically identical PDMS lubricant. In agreement with experiments, we find a sublinear power law dependence between the external force F and the droplet velocity v, F ∝ vα with α < 1; however, the exponents differ (α ∼ 0.6-0.7 in simulations versus α ∼ 0.25 in experiments). With increasing velocity, the droplets elongate and the receding contact angle decreases, whereas the advancing contact angle remains roughly constant. Analyzing the flow profiles inside the droplet reveals that the droplets do not slide but roll, with vanishing slip at the substrate surface. Surprisingly, adding lubricant has very little effect on the effective friction force between the droplet and the substrate, even though it has a pronounced effect on the size and structure of the wetting ridge, especially above the cloaking transition.
Collapse
Affiliation(s)
- Rodrique G. M. Badr
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 7-9, D-55099 Mainz, Germany
| | - Lukas Hauer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Doris Vollmer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Friederike Schmid
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 7-9, D-55099 Mainz, Germany
| |
Collapse
|
18
|
Liu K, He Y, Lu Z, Xu Q, Wang L, Liu Z, Khou J, Ye J, Liu C, Zhang T. Laser-induced graphene-based digital microfluidics (gDMF): a versatile platform with sub-one-dollar cost. LAB ON A CHIP 2024; 24:3125-3134. [PMID: 38770672 DOI: 10.1039/d4lc00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Digital microfluidics (DMF), is an emerging liquid-handling technology, that shows promising potential in various biological and biomedical applications. However, the fabrication of conventional DMF chips is usually complicated, time-consuming, and costly, which seriously limits their widespread applications, especially in the field of point-of-care testing (POCT). Although the paper- or film-based DMF devices can offer an inexpensive and convenient alternative, they still suffer from the planar addressing structure, and thus, limited electrode quantity. To address the above issues, we herein describe the development of a laser-induced graphene (LIG) based digital microfluidics chip (gDMF). It can be easily made (within 10 min, under ambient conditions, without the need of costly materials or cleanroom-based techniques) by a computer-controlled laser scribing process. Moreover, both the planar addressing DMF (pgDMF) and vertical addressing DMF (vgDMF) can be readily achieved, with the latter offering the potential of a higher electrode density. Also, both of them have an impressively low cost of below $1 ($0.85 for pgDMF, $0.59 for vgDMF). Experiments also show that both pgDMF and vgDMF have a comparable performance to conventional DMF devices, with a colorimetric assay performed on vgDMF as proof-of-concept to demonstrate their applicability. Given the simple fabrication, low cost, full function, and the ease of modifying the electrode pattern for various applications, it is reasonably expect that the proposed gDMF may offer an alternative choice as a versatile platform for POCT.
Collapse
Affiliation(s)
- Ke Liu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Yu He
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
- Research Center for Analytical Instrumentation and Intelligent Systems, Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Zefan Lu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Qiudi Xu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Lan Wang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Zhongxuan Liu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Jeremy Khou
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
| | - Jiaming Ye
- Tinkerbio Biotechnology Co., Ltd, Hangzhou 310023, China
| | - Chong Liu
- Department of Neurobiology, Department of Neurosurgery of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310023, China
| | - Tao Zhang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310023, China.
- Research Center for Analytical Instrumentation and Intelligent Systems, Huzhou Institute of Zhejiang University, Huzhou 313002, China
| |
Collapse
|
19
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
20
|
Wang D, Jin K, Ji J, Hu C, Du M, Belgaid Y, Shi S, Li J, Hu S, Nathan A, Yu J, Ma H. Active-matrix digital microfluidics design for field programmable high-throughput digitalized liquid handling. iScience 2024; 27:109324. [PMID: 38706854 PMCID: PMC11067379 DOI: 10.1016/j.isci.2024.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 05/07/2024] Open
Abstract
Digital liquid sample handling is an enabling tool for cutting-edge life-sciences research. We present here an active-matrix thin-film transistor (TFT) based digital microfluidics system, referred to as Field Programmable Droplet Array (FPDA). The system contains 256 × 256 pixels in an active area of 10.65 cm2, which can manipulate thousands of addressable liquid droplets simultaneously. By leveraging a novel TFT device and circuits design solution, we manage to programmatically manipulate droplets at single-pixel level. The minimum achievable droplet volume is around 0.5 nL, which is two orders of magnitude smaller than the smallest droplet ever reported on active-matrix digital microfluidics. The movement of droplets can be either pre-programmed or controlled in real-time. The FPDA system shows great potential of the ubiquitous thin-film electronics technology in digital liquid handling. These efforts will make it possible to create a true programmable lab-on-a-chip device to enable great advances in life science research.
Collapse
Affiliation(s)
- Dongping Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Kai Jin
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Jiajian Ji
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Maohua Du
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan 528000, P.R. China
| | | | - Subao Shi
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan 528000, P.R. China
| | - Jiahao Li
- ACX Instruments Ltd, Cambridge CB4 0WS, UK
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Arokia Nathan
- School of Information Science and Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Jun Yu
- School of Information Science and Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan 528000, P.R. China
| |
Collapse
|
21
|
Wu W, Mu Y. Microfluidic technologies for advanced antimicrobial susceptibility testing. BIOMICROFLUIDICS 2024; 18:031504. [PMID: 38855477 PMCID: PMC11162290 DOI: 10.1063/5.0190112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance is getting serious and becoming a threat to public health worldwide. The improper and excessive use of antibiotics is responsible for this situation. The standard methods used in clinical laboratories, to diagnose bacterial infections, identify pathogens, and determine susceptibility profiles, are time-consuming and labor-intensive, leaving the empirical antimicrobial therapy as the only option for the first treatment. To prevent the situation from getting worse, evidence-based therapy should be given. The choosing of effective drugs requires powerful diagnostic tools to provide comprehensive information on infections. Recent progress in microfluidics is pushing infection diagnosis and antimicrobial susceptibility testing (AST) to be faster and easier. This review summarizes the recent development in microfluidic assays for rapid identification and AST in bacterial infections. Finally, we discuss the perspective of microfluidic-AST to develop the next-generation infection diagnosis technologies.
Collapse
Affiliation(s)
- Wenshuai Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Mu
- Author to whom correspondence should be addressed:
| |
Collapse
|
22
|
Zeng Y, Gan X, Xu Z, Hu X, Hu C, Ma H, Tu H, Chai B, Yang C, Hu S, Chai Y. AIEgens-enhanced rapid sensitive immunofluorescent assay for SARS-CoV-2 with digital microfluidics. Anal Chim Acta 2024; 1298:342398. [PMID: 38462346 DOI: 10.1016/j.aca.2024.342398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Sensitive and rapid antigen detection is critical for the diagnosis and treatment of infectious diseases, but conventional ELISAs including chemiluminescence-based assays are limited in sensitivity and require many operation steps. Fluorescence immunoassays are fast and convenient but often show limited sensitivity and dynamic range. RESULTS To address the need, an aggregation-induced emission fluorgens (AIEgens) enhanced immunofluorescent assay with beads-based quantification on the digital microfluidic (DMF) platform was developed. Portable DMF devices and chips with small electrodes were fabricated, capable of manipulating droplets within 100 nL and boosting the reaction efficiency. AIEgen nanoparticles (NPs) with high fluorescence and photostability were synthesized to enhance the test sensitivity and detection range. The integration of AIEgen probes, transparent DMF chip design, and the large magnetic beads (10 μm) as capture agents enabled rapid and direct image-taking and signal calculation of the test result. The performance of this platform was demonstrated by point-of-care quantification of SARS-CoV-2 nucleocapsid (N) protein. Within 25 min, a limit of detection of 5.08 pg mL-1 and a limit of quantification of 8.91 pg mL-1 can be achieved using <1 μL sample. The system showed high reproducibility across the wide dynamic range (10-105 pg mL-1), with the coefficient of variance ranging from 2.6% to 9.8%. SIGNIFICANCE This rapid, sensitive AIEgens-enhanced immunofluorescent assay on the DMF platform showed simplified reaction steps and improved performance, providing insight into the small-volume point-of-care testing of different biomarkers in research and clinical applications.
Collapse
Affiliation(s)
- Yuping Zeng
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xiangyu Gan
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Zhourui Xu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xiaoxiang Hu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong province, China.
| | - Hangjia Tu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
| | - Chengbin Yang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Yujuan Chai
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
23
|
Cai L, Lin L, Lin S, Wang X, Chen Y, Zhu H, Zhu Z, Yang L, Xu X, Yang C. Highly Multiplexing, Throughput and Efficient Single-Cell Protein Analysis with Digital Microfluidics. SMALL METHODS 2024:e2400375. [PMID: 38607945 DOI: 10.1002/smtd.202400375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Proteins as crucial components of cells are responsible for the majority of cellular processes. Sensitive and efficient protein detection enables a more accurate and comprehensive investigation of cellular phenotypes and life activities. Here, a protein sequencing method with high multiplexing, high throughput, high cell utilization, and integration based on digital microfluidics (DMF-Protein-seq) is proposed, which transforms protein information into DNA sequencing readout via DNA-tagged antibodies and labels single cells with unique cell barcodes. In a 184-electrode DMF-Protein-seq system, ≈1800 cells are simultaneously detected per experimental run. The digital microfluidics device harnessing low-adsorbed hydrophobic surface and contaminants-isolated reaction space supports high cell utilization (>90%) and high mapping reads (>90%) with the input cells ranging from 140 to 2000. This system leverages split&pool strategy on the DMF chip for the first time to overcome DMF platform restriction in cell analysis throughput and replace the traditionally tedious bench-top combinatorial barcoding. With the benefits of high efficiency and sensitivity in protein analysis, the system offers great potential for cell classification and drug monitoring based on protein expression at the single-cell level.
Collapse
Affiliation(s)
- Linfeng Cai
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shiyan Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuanqun Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yingwen Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huanghuang Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liu Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
24
|
Bae SJ, Lee SJ, Im DJ. Simultaneous Separating, Splitting, Collecting, and Dispensing by Droplet Pinch-Off for Droplet Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309062. [PMID: 38009759 DOI: 10.1002/smll.202309062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Simultaneous separating, splitting, collecting, and dispensing a cell suspension droplet has been demonstrated by aspiration and subsequent droplet pinch-off for use in microfluidic droplet cell culture systems. This method is applied to cell manipulations including aliquots and concentrations of microalgal and mammalian cell suspensions. Especially, medium exchange of spheroid droplets is successfully demonstrated by collecting more than 99% of all culture medium without damaging the spheroids, demonstrating its potential for a 3D cell culture system. Through dimensional analysis and systematic parametric studies, it is found that initial mother droplet size together with aspiration flow rate determines three droplet pinch-off regimes. By observing contact angle changes during aspiration, the difference in the large and the small droplet pinch-off can be quantitatively explained using force balance. It is found that the capillary number plays a significant role in droplet pinch-off, but the Bond number and the Ohnesorge number have minor effects. Since the dispensed droplet size is mainly determined by the capillary number, the dispensed droplet size can be controlled simply by adjusting the aspiration flow rate. It is hoped that this method can contribute to various fields using droplets, such as droplet cell culture and digital microfluidics, beyond the generation of small droplets.
Collapse
Affiliation(s)
- Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| | - Seon Jun Lee
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| |
Collapse
|
25
|
Lepikko S, Jaques YM, Junaid M, Backholm M, Lahtinen J, Julin J, Jokinen V, Sajavaara T, Sammalkorpi M, Foster AS, Ras RHA. Droplet slipperiness despite surface heterogeneity at molecular scale. Nat Chem 2024; 16:506-513. [PMID: 37872419 PMCID: PMC10997520 DOI: 10.1038/s41557-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Friction determines whether liquid droplets slide off a solid surface or stick to it. Surface heterogeneity is generally acknowledged as the major cause of increased contact angle hysteresis and contact line friction of droplets. Here we challenge this long-standing premise for chemical heterogeneity at the molecular length scale. By tuning the coverage of self-assembled monolayers (SAMs), water contact angles change gradually from about 10° to 110° yet contact angle hysteresis and contact line friction are low for the low-coverage hydrophilic SAMs as well as high-coverage hydrophobic SAMs. Their slipperiness is not expected based on the substantial chemical heterogeneity of the SAMs featuring uncoated areas of the substrate well beyond the size of a water molecule as probed by metal reactants. According to molecular dynamics simulations, the low friction of both low- and high-coverage SAMs originates from the mobility of interfacial water molecules. These findings reveal a yet unknown and counterintuitive mechanism for slipperiness, opening new avenues for enhancing the mobility of droplets.
Collapse
Affiliation(s)
- Sakari Lepikko
- Department of Applied Physics, Aalto University, Espoo, Finland
- Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Ygor Morais Jaques
- Department of Applied Physics, Aalto University, Espoo, Finland
- Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Chemistry and Materials Science, Aalto University, Espoo, Finland
| | - Muhammad Junaid
- Department of Applied Physics, Aalto University, Espoo, Finland
- Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Matilda Backholm
- Department of Applied Physics, Aalto University, Espoo, Finland
- Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Jouko Lahtinen
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Jaakko Julin
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - Ville Jokinen
- Department of Chemistry and Materials Science, Aalto University, Espoo, Finland
| | - Timo Sajavaara
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - Maria Sammalkorpi
- Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Chemistry and Materials Science, Aalto University, Espoo, Finland
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Adam S Foster
- Department of Applied Physics, Aalto University, Espoo, Finland
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Robin H A Ras
- Department of Applied Physics, Aalto University, Espoo, Finland.
- Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
| |
Collapse
|
26
|
Liu X, Cai J, Wang W, Chai Y. Multiplex digital microfluidics using serial controls and its applications in glucose sensing. SLAS Technol 2024; 29:100105. [PMID: 37652174 DOI: 10.1016/j.slast.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Digital microfluidics (DMF) has found great applications in vitro diagnostics (IVD). Compared to the microfabrication-based DMF, printed circuit board (PCB)-based DMF is more economical and compatible with existing IVD instruments. Despite that, current PCB-based DMF is oftentimes limited by the available droplets that can be controlled simultaneously, compromising their throughput and applications as point-of-care tools. In this work, a platform that simultaneously controls multiple PCB-based DMF plates was constructed. The software and hardware were first developed, followed by the reliability tests. Colorimetric analysis of glucose was applied to the PCB-based DMF, demonstrating the capability of this platform. With the high throughput enabled by simultaneous operations of multiple plates, this PCB-based DMF can potentially allow point-of-care testing with low cost for resource-limited settings.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinying Cai
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Wenjia Wang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yujuan Chai
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
27
|
Tong Z, Yang D, Shen C, Li C, Xu X, Li Q, Wu Z, Ma H, Chen F, Mao H. Rapid automated extracellular vesicle isolation and miRNA preparation on a cost-effective digital microfluidic platform. Anal Chim Acta 2024; 1296:342337. [PMID: 38401929 DOI: 10.1016/j.aca.2024.342337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
As a prerequisite for extracellular vesicle (EV) -based studies and diagnosis, effective isolation, enrichment and retrieval of EV biomarkers are crucial to subsequent analyses, such as miRNA-based liquid biopsy for non-small-cell lung cancer (NSCLC). However, most conventional approaches for EV isolation suffer from lengthy procedure, high cost, and intense labor. Herein, we introduce the digital microfluidic (DMF) technology to EV pretreatment protocols and demonstrate a rapid and fully automated sample preparation platform for clinical tumor liquid biopsy. Combining a reusable DMF chip technique with a low-cost EV isolation and miRNA preparation protocol, the platform completes automated sample processing in 20-30 min, supporting immediate RT-qPCR analyses on EV-derived miRNAs (EV-miRNAs). The utility and reliability of the platform was validated via clinical sample processing for EV-miRNA detection. With 23 tumor and 20 non-tumor clinical plasma samples, we concluded that EV-miR-486-5p and miR-21-5p are effective biomarkers for NSCLC with a small sample volumn (20-40 μL). The result was consistent to that of a commercial exosome miRNA extraction kit. These results demonstrate the effectiveness of DMF in EV pretreatment for miRNA detection, providing a facile solution to EV isolation for liquid biopsy.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Dayyani H, Mohseni A, Bijarchi MA. Dynamic behavior of floating magnetic liquid marbles under steady and pulse-width-modulated magnetic fields. LAB ON A CHIP 2024; 24:2005-2016. [PMID: 38390638 DOI: 10.1039/d3lc00578j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Liquid marbles show promising potential for digital microfluidic devices due to their lower friction with the platform surface than non-covered droplets. In this study, the manipulation of a biocompatible magnetic liquid marble with a magnetic shell (LMMS) is experimentally studied. The movement of the floating LMMS on the water surface, which is actuated by DC and pulse width modulation (PWM) magnetic fields, is investigated under the influence of various parameters, including the LMMS volume, the initial distance of the LMMS from the magnetic coil tip, the magnetic coil current, the PWM frequency and its duty cycle. The LMMS has a shorter travel time to the magnetic coil tip under a DC magnetic field by increasing the magnetic coil current, decreasing the initial distance and its volume. In the PWM mode, these parameters show similar behavior; moreover, increasing the PWM duty cycle and decreasing the PWM frequency shorten the travel time. It is demonstrated that actuation by a PWM magnetic field with step-by-step movement provides better control over manipulation of the floating magnetic marble. The dynamic behavior of an LMMS is compared to a ferrofluid marble (FM), which is formed using a ferrofluid instead of water as its core. It is observed that the LMMS has a lower velocity than the FM.
Collapse
Affiliation(s)
- Hossein Dayyani
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Alireza Mohseni
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mohamad Ali Bijarchi
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
29
|
Raju C, Elpa DP, Urban PL. Automation and Computerization of (Bio)sensing Systems. ACS Sens 2024; 9:1033-1048. [PMID: 38363106 PMCID: PMC10964247 DOI: 10.1021/acssensors.3c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Sensing systems necessitate automation to reduce human effort, increase reproducibility, and enable remote sensing. In this perspective, we highlight different types of sensing systems with elements of automation, which are based on flow injection and sequential injection analysis, microfluidics, robotics, and other prototypes addressing specific real-world problems. Finally, we discuss the role of computer technology in sensing systems. Automated flow injection and sequential injection techniques offer precise and efficient sample handling and dependable outcomes. They enable continuous analysis of numerous samples, boosting throughput, and saving time and resources. They enhance safety by minimizing contact with hazardous chemicals. Microfluidic systems are enhanced by automation to enable precise control of parameters and increase of analysis speed. Robotic sampling and sample preparation platforms excel in precise execution of intricate, repetitive tasks such as sample handling, dilution, and transfer. These platforms enhance efficiency by multitasking, use minimal sample volumes, and they seamlessly integrate with analytical instruments. Other sensor prototypes utilize mechanical devices and computer technology to address real-world issues, offering efficient, accurate, and economical real-time solutions for analyte identification and quantification in remote areas. Computer technology is crucial in modern sensing systems, enabling data acquisition, signal processing, real-time analysis, and data storage. Machine learning and artificial intelligence enhance predictions from the sensor data, supporting the Internet of Things with efficient data management.
Collapse
Affiliation(s)
- Chamarthi
Maheswar Raju
- Department of Chemistry, National
Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Decibel P. Elpa
- Department of Chemistry, National
Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Pawel L. Urban
- Department of Chemistry, National
Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
30
|
Chen Y, Wang X, Na X, Zhang Y, Li Z, Chen X, Cai L, Song J, Xu R, Yang C. Highly Multiplexed, Efficient, and Automated Single-Cell MicroRNA Sequencing with Digital Microfluidics. SMALL METHODS 2024; 8:e2301250. [PMID: 38016072 DOI: 10.1002/smtd.202301250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Single-cell microRNA (miRNA) sequencing has allowed for comprehensively studying the abundance and complex networks of miRNAs, which provides insights beyond single-cell heterogeneity into the dynamic regulation of cellular events. Current benchtop-based technologies for single-cell miRNA sequencing are low throughput, limited reaction efficiency, tedious manual operations, and high reagent costs. Here, a highly multiplexed, efficient, integrated, and automated sample preparation platform is introduced for single-cell miRNA sequencing based on digital microfluidics (DMF), named Hiper-seq. The platform integrates major steps and automates the iterative operations of miRNA sequencing library construction by digital control of addressable droplets on the DMF chip. Based on the design of hydrophilic micro-structures and the capability of handling droplets of DMF, multiple single cells can be selectively isolated and subject to sample processing in a highly parallel way, thus increasing the throughput and efficiency for single-cell miRNA measurement. The nanoliter reaction volume of this platform enables a much higher miRNA detection ability and lower reagent cost compared to benchtop methods. It is further applied Hiper-seq to explore miRNAs involved in the ossification of mouse skeletal stem cells after bone fracture and discovered unreported miRNAs that regulate bone repairing.
Collapse
Affiliation(s)
- Yingwen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuanqun Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Na
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yingkun Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaohui Chen
- State Key Laboratory of Cellular Stress Biology, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361100, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Linfeng Cai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361100, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Chaoyong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
31
|
Wang W, Vahabi H, Taassob A, Pillai S, Kota AK. On-Demand, Contact-Less and Loss-Less Droplet Manipulation via Contact Electrification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308101. [PMID: 38233209 PMCID: PMC10933654 DOI: 10.1002/advs.202308101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Indexed: 01/19/2024]
Abstract
While there are many droplet manipulation techniques, all of them suffer from at least one of the following drawbacks - complex fabrication or complex equipment or liquid loss. In this work, a simple and portable technique is demonstrated that enables on-demand, contact-less and loss-less manipulation of liquid droplets through a combination of contact electrification and slipperiness. In conjunction with numerical simulations, a quantitative analysis is presented to explain the onset of droplet motion. Utilizing the contact electrification technique, contact-less and loss-less manipulation of polar and non-polar liquid droplets on different surface chemistries and geometries is demonstrated. It is envisioned that the technique can pave the way to simple, inexpensive, and portable lab on a chip and point of care devices.
Collapse
Affiliation(s)
- Wei Wang
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
- Department of MechanicalAerospace and Biomedical EngineeringUniversity of Tennessee KnoxvilleKnoxvilleTN37996USA
| | - Hamed Vahabi
- Department of Mechanical EngineeringColorado State UniversityFort CollinsCO80525USA
| | - Arsalan Taassob
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Sreekiran Pillai
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Arun Kumar Kota
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
- Department of Mechanical EngineeringColorado State UniversityFort CollinsCO80525USA
| |
Collapse
|
32
|
Bai C, Tang X, Li Y, Arai T, Huang Q, Liu X. Acoustohydrodynamic micromixers: Basic mixing principles, programmable mixing prospectives, and biomedical applications. BIOMICROFLUIDICS 2024; 18:021505. [PMID: 38659428 PMCID: PMC11037935 DOI: 10.1063/5.0179750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
Acoustohydrodynamic micromixers offer excellent mixing efficiency, cost-effectiveness, and flexible controllability compared with conventional micromixers. There are two mechanisms in acoustic micromixers: indirect influence by induced streamlines, exemplified by sharp-edge micromixers, and direct influence by acoustic waves, represented by surface acoustic wave micromixers. The former utilizes sharp-edge structures, while the latter employs acoustic wave action to affect both the fluid and its particles. However, traditional micromixers with acoustic bubbles achieve significant mixing performance and numerous programmable mixing platforms provide excellent solutions with wide applicability. This review offers a comprehensive overview of various micromixers, elucidates their underlying principles, and explores their biomedical applications. In addition, advanced programmable micromixing with impressive versatility, convenience, and ability of cross-scale operations is introduced in detail. We believe this review will benefit the researchers in the biomedical field to know the micromixers and find a suitable micromixing method for their various applications.
Collapse
Affiliation(s)
- Chenhao Bai
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqing Tang
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuyang Li
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Tatsuo Arai
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
33
|
Wu J, Fang D, Zhou Y, Gao G, Zeng J, Zeng Y, Zheng H. Multifunctional droplet handling on surface-charge-graphic-decorated porous papers. LAB ON A CHIP 2024; 24:594-603. [PMID: 38175166 DOI: 10.1039/d3lc00806a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Developing a fluidic platform that combines high-throughput with reconfigurability is essential for a wide range of cutting-edge applications, but achieving both capabilities simultaneously remains a significant challenge. Herein, we propose a novel and unique method for droplet manipulation via drawing surface charge graphics on electrode-free papers in a contactless way. We find that opposite charge graphics can be written and retained on the surface layer of porous insulating paper by a controlled charge depositing method. The retained charge graphics result in high-resolution patterning of electrostatic potential wells (EPWs) on the hydrophobic porous surface, allowing for digital and high-throughput droplet handling. Since the charge graphics can be written/projected dynamically and simultaneously in large areas, allowing for on-demand and real-time reconfiguration of EPWs, we are able to develop a charge-graphic fluidic platform with both high reconfigurability and high throughput. The advantages and application potential of the platform have been demonstrated in chemical detection and dynamically controllable fluidic networks.
Collapse
Affiliation(s)
- Jiayao Wu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
| | - Duokui Fang
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yifan Zhou
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ge Gao
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ji Zeng
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yubin Zeng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Huai Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
34
|
Sheng H, Chen L, Zhao Y, Long X, Chen Q, Wu C, Li B, Fei Y, Mi L, Ma J. Closed, one-stop intelligent and accurate particle characterization based on micro-Raman spectroscopy and digital microfluidics. Talanta 2024; 266:124895. [PMID: 37454511 DOI: 10.1016/j.talanta.2023.124895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Monoclonal antibodies are prone to form protein particles through aggregation, fragmentation, and oxidation under varying stress conditions during the manufacturing, shipping, and storage of parenteral drug products. According to pharmacopeia requirements, sub-visible particle levels need to be controlled throughout the shelf life of the product. Therefore, in addition to determining particle counts, it is crucial to accurately characterize particles in drug product to understand the stress condition of exposure and to implement appropriate mitigation actions for a specific formulation. In this study, we developed a new method for intelligent characterization of protein particles using micro-Raman spectroscopy on a digital microfluidic chip (DMF). Several microliters of protein particle solutions induced by stress degradation were loaded onto a DMF chip to generate multiple droplets for Raman spectroscopy testing. By training multiple machine learning classification models on the obtained Raman spectra of protein particles, eight types of protein particles were successfully characterized and predicted with high classification accuracy (93%-100%). The advantages of the novel particle characterization method proposed in this study include a closed system to prevent particle contamination, one-stop testing of morphological and chemical structure information, low sample volume consumption, reusable particle droplets, and simplified data analysis with high classification accuracy. It provides great potential to determine the probable root cause of the particle source or stress conditions by a single testing, so that an accurate particle control strategy can be developed and ultimately extend the product shelf-life.
Collapse
Affiliation(s)
- Han Sheng
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Liwen Chen
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China; Ruidge Biotech Co. Ltd., No. 888, Huanhu West 2nd Road, Lin-Gang Special Area, China (Shanghai) Pilot Free Trade Zone, Shanghai, 200131, China
| | - Yinping Zhao
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xiangan Long
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Qiushu Chen
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Chuanyong Wu
- Shanghai Hengxin BioTechnology, Ltd., 1688 North Guo Quan Rd, Bldg A8, Rm 801, Shanghai, 200438, China
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No.3888 Dong Nanhu Road, Changchun, Jilin, 130033, China
| | - Yiyan Fei
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Lan Mi
- Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jiong Ma
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China; Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China; Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
35
|
Yang C, Gan X, Zeng Y, Xu Z, Xu L, Hu C, Ma H, Chai B, Hu S, Chai Y. Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress. Biosens Bioelectron 2023; 242:115723. [PMID: 37832347 DOI: 10.1016/j.bios.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Significant breakthroughs have been made in digital microfluidic (DMF)-based technologies over the past decades. DMF technology has attracted great interest in bioassays depending on automatic microscale liquid manipulations and complicated multi-step processing. In this review, the recent advances of DMF platforms in the biomedical field were summarized, focusing on the integrated design and applications of the DMF system. Firstly, the electrowetting-on-dielectric principle, fabrication of DMF chips, and commercialization of the DMF system were elaborated. Then, the updated droplets and magnetic beads manipulation strategies with DMF were explored. DMF-based biomedical applications were comprehensively discussed, including automated sample preparation strategies, immunoassays, molecular diagnosis, blood processing/testing, and microbe analysis. Emerging applications such as enzyme activity assessment and DNA storage were also explored. The performance of each bioassay was compared and discussed, providing insight into the novel design and applications of the DMF technology. Finally, the advantages, challenges, and future trends of DMF systems were systematically summarized, demonstrating new perspectives on the extensive applications of DMF in basic research and commercialization.
Collapse
Affiliation(s)
- Chengbin Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Xiangyu Gan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Yuping Zeng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Zhourui Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Longqian Xu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, China.
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Yujuan Chai
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
36
|
Saitta L, Cutuli E, Celano G, Tosto C, Sanalitro D, Guarino F, Cicala G, Bucolo M. Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring. Polymers (Basel) 2023; 15:4461. [PMID: 38006185 PMCID: PMC10675802 DOI: 10.3390/polym15224461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, a 3D printed biocompatible micro-optofluidic (MoF) device for two-phase flow monitoring is presented. Both an air-water bi-phase flow and a two-phase mixture composed of micrometric cells suspended on a liquid solution were successfully controlled and monitored through its use. To manufacture the MoF device, a highly innovative microprecision 3D printing technique was used named Projection Microstereolithography (PμSL) in combination with the use of a novel 3D printable photocurable resin suitable for biological and biomedical applications. The concentration monitoring of biological fluids relies on the absorption phenomenon. More precisely, the nature of the transmission of the light strictly depends on the cell concentration: the higher the cell concentration, the lower the optical acquired signal. To achieve this, the microfluidic T-junction device was designed with two micrometric slots for the optical fibers' insertion, needed to acquire the light signal. In fact, both the micro-optical and the microfluidic components were integrated within the developed device. To assess the suitability of the selected biocompatible transparent resin for optical detection relying on the selected working principle (absorption phenomenon), a comparison between a two-phase flow process detected inside a previously fully characterized micro-optofluidic device made of a nonbiocompatible high-performance resin (HTL resin) and the same made of the biocompatible one (BIO resin) was carried out. In this way, it was possible to highlight the main differences between the two different resin grades, which were further justified with proper chemical analysis of the used resins and their hydrophilic/hydrophobic nature via static water contact angle measurements. A wide experimental campaign was performed for the biocompatible device manufactured through the PμSL technique in different operative conditions, i.e., different concentrations of eukaryotic yeast cells of Saccharomyces cerevisiae (with a diameter of 5 μm) suspended on a PBS (phosphate-buffered saline) solution. The performed analyses revealed that the selected photocurable transparent biocompatible resin for the manufactured device can be used for cell concentration monitoring by using ad hoc 3D printed micro-optofluidic devices. In fact, by means of an optical detection system and using the optimized operating conditions, i.e., the optimal values of the flow rate FR=0.1 mL/min and laser input power P∈{1,3} mW, we were able to discriminate between biological fluids with different concentrations of suspended cells with a robust working ability R2=0.9874 and Radj2=0.9811.
Collapse
Affiliation(s)
- Lorena Saitta
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Emanuela Cutuli
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| | - Giovanni Celano
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Claudio Tosto
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Dario Sanalitro
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
- INSTM-UDR CT, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maide Bucolo
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| |
Collapse
|
37
|
Stephenson A, Lastra L, Nguyen B, Chen YJ, Nivala J, Ceze L, Strauss K. Physical Laboratory Automation in Synthetic Biology. ACS Synth Biol 2023; 12:3156-3169. [PMID: 37935025 DOI: 10.1021/acssynbio.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Synthetic Biology has overcome many of the early challenges facing the field and is entering a systems era characterized by adoption of Design-Build-Test-Learn (DBTL) approaches. The need for automation and standardization to enable reproducible, scalable, and translatable research has become increasingly accepted in recent years, and many of the hardware and software tools needed to address these challenges are now in place or under development. However, the lack of connectivity between DBTL modules and barriers to access and adoption remain significant challenges to realizing the full potential of lab automation. In this review, we characterize and classify the state of automation in synthetic biology with a focus on the physical automation of experimental workflows. Though fully autonomous scientific discovery is likely a long way off, impressive progress has been made toward automating critical elements of experimentation by combining intelligent hardware and software tools. It is worth questioning whether total automation that removes humans entirely from the loop should be the ultimate goal, and considerations for appropriate automation versus total automation are discussed in this light while emphasizing areas where further development is needed in both contexts.
Collapse
Affiliation(s)
- Ashley Stephenson
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Microsoft Research, Redmond, Washington 98052, United States
| | - Lauren Lastra
- Microsoft Research, Redmond, Washington 98052, United States
| | - Bichlien Nguyen
- Microsoft Research, Redmond, Washington 98052, United States
| | - Yuan-Jyue Chen
- Microsoft Research, Redmond, Washington 98052, United States
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Luis Ceze
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Karin Strauss
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Microsoft Research, Redmond, Washington 98052, United States
| |
Collapse
|
38
|
Feng H, Shen S, Jin M, Zhang Q, Liu M, Wu Z, Chen J, Yi Z, Zhou G, Shui L. Microwell Confined Electro-Coalescence for Rapid Formation of High-Throughput Droplet Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302998. [PMID: 37449335 DOI: 10.1002/smll.202302998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Droplet array is widely applied in single cell analysis, drug screening, protein crystallization, etc. This work proposes and validates a method for rapid formation of uniform droplet array based on microwell confined droplets electro-coalescence of screen-printed emulsion droplets, namely electro-coalescence droplet array (ECDA). The electro-coalescence of droplets is according to the polarization induced electrostatic and dielectrophoretic forces, and the dielectrowetting effect. The photolithographically fabricated microwells are highly regular and reproducible, ensuring identical volume and physical confinement to achieve uniform droplet array, and meanwhile the microwell isolation protects the paired water droplets from further fusion and broadens its feasibility to different fluidic systems. Under optimized conditions, a droplet array with an average diameter of 85 µm and a throughput of 106 in a 10 cm × 10 cm chip can be achieved within 5 s at 120 Vpp and 50 kHz. This ECDA chip is validated for various microwell geometries and functional materials. The optimized ECDA are successfully applied for digital viable bacteria counting, showing comparable results to the plate culture counting. Such an ECDA chip, as a digitizable and high-throughput platform, presents excellent potential for high-throughput screening, analysis, absolute quantification, etc.
Collapse
Affiliation(s)
- Haoqiang Feng
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shitao Shen
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mingliang Jin
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qilin Zhang
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mengjun Liu
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zihao Wu
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiamei Chen
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen, 518133, P. R. China
| | - Zichuan Yi
- College of Electron and Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, P. R. China
| | - Guofu Zhou
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lingling Shui
- International Joint Laboratory of Optofluidic Technology and System, National Centre for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics & School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
39
|
Laman A, Das D, Priye A. Miniaturized Non-Contact Heating and Transmitted Light Imaging Using an Inexpensive and Modular 3D-Printed Platform for Molecular Diagnostics. SENSORS (BASEL, SWITZERLAND) 2023; 23:7718. [PMID: 37765775 PMCID: PMC10535971 DOI: 10.3390/s23187718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The ability to simultaneously heat and image samples using transmitted light is crucial for several biological applications. However, existing techniques such as heated stage microscopes, thermal cyclers equipped with imaging capabilities, or non-contact heating systems are often bulky, expensive, and complex. This work presents the development and characterization of a Miniaturized Optically-clear Thermal Enclosure (MOTE) system-an open-source, inexpensive, and low-powered modular system-capable of convectively heating samples while simultaneously imaging them with transmitted light. We develop and validate a computational fluid dynamics (CFD) model to design and optimize the heating chamber. The model simulates velocity and temperature profiles within the heating chamber for various chamber materials and sizes. The computational model yielded an optimal chamber dimension capable of achieving a stable temperature ranging from ambient to 95 °C with a spatial discrepancy of less than 1.5 °C, utilizing less than 8.5 W of power. The dual-functionality of the MOTE system, enabling synchronous heating and transmitted light imaging, was demonstrated through the successful execution of paper-based LAMP reactions to detect λ DNA samples in real-time down to 10 copies/µL of the target concentration. The MOTE system offers a promising and flexible platform for various applications, from molecular diagnostics to biochemical analyses, cell biology, genomics, and education.
Collapse
Affiliation(s)
- Alex Laman
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Debayan Das
- Chemical Engineering Department, NIT Durgapur, Mahatma Gandhi Rd., A-Zone, Durgapur 713209, West Bengal, India;
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
- Digital Futures, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
40
|
Zeng X, Guo X, Jiang S, Yang X, Zhong Z, Liu S, Zhu Z, Song J, Yang C. Digital-scRRBS: A Cost-Effective, Highly Sensitive, and Automated Single-Cell Methylome Analysis Platform via Digital Microfluidics. Anal Chem 2023; 95:13313-13321. [PMID: 37616549 DOI: 10.1021/acs.analchem.3c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Single-cell DNA methylation sequencing is highly effective for identifying cell subpopulations and constructing epigenetic regulatory networks. Existing methylome analyses require extensive starting materials and are costly, complex, and susceptible to contamination, thereby impeding the development of single-cell methylome technology. In this work, we report digital microfluidics-based single-cell reduced representation bisulfite sequencing (digital-scRRBS), the first microfluidics-based single-cell methylome library construction platform, which is an automatic, effective, reproducible, and reagent-efficient technique to dissect the single-cell methylome. Using our digital microfluidic chip, we isolated single cells in 15 s and successfully constructed single-cell methylation sequencing libraries with a unique genome mapping rate of up to 53.6%, covering up to 2.26 million CpG sites. Digital-scRRBS demonstrates a high capacity for distinguishing cell identity and tracking DNA methylation during drug administration. Digital-scRRBS expands the applicability of single-cell methylation methods as a versatile tool for epigenetic analysis of rare cells and populations with high levels of heterogeneity.
Collapse
Affiliation(s)
- Xi Zeng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical of Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Xiaoxu Guo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical of Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Shaowei Jiang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical of Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Xiaoping Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical of Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Zhixing Zhong
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical of Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Siyu Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical of Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical of Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical of Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
41
|
Abedini-Nassab R, Sadeghidelouei N, Shields Iv CW. Magnetophoretic circuits: A review of device designs and implementation for precise single-cell manipulation. Anal Chim Acta 2023; 1272:341425. [PMID: 37355317 PMCID: PMC10317203 DOI: 10.1016/j.aca.2023.341425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Lab-on-a-chip tools have played a pivotal role in advancing modern biology and medicine. A key goal in this field is to precisely transport single particles and cells to specific locations on a chip for quantitative analysis. To address this large and growing need, magnetophoretic circuits have been developed in the last decade to manipulate a large number of single bioparticles in a parallel and highly controlled manner. Inspired by electrical circuits, magnetophoretic circuits are composed of passive and active circuit elements to offer commensurate levels of control and automation for transporting individual bioparticles. These specifications make them unique compared to other technologies in addressing crucial bioanalytical applications and answering fundamental questions buried in highly heterogeneous cell populations. In this comprehensive review, we describe key theoretical considerations for manufacturing and simulating magnetophoretic circuits. We provide a detailed tutorial for operating magnetophoretic devices containing different circuit elements (e.g., conductors, diodes, capacitors, and transistors). Finally, we provide a critical comparison of the utility of these devices to other microchip-based platforms for cellular manipulation, and discuss how they may address unmet needs in single-cell biology and medicine.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran.
| | - Negar Sadeghidelouei
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran
| | - C Wyatt Shields Iv
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, United States
| |
Collapse
|
42
|
Gao S, Rui X, Zeng X, Zhou J. EWOD Chip with Micro-Barrier Electrode for Simultaneous Enhanced Mixing during Transportation. SENSORS (BASEL, SWITZERLAND) 2023; 23:7102. [PMID: 37631640 PMCID: PMC10459807 DOI: 10.3390/s23167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Digital microfluidic platforms have been extensively studied in biology. However, achieving efficient mixing of macromolecules in microscale, low Reynolds number fluids remains a major challenge. To address this challenge, this study presents a novel design solution based on dielectric electro-wetting (EWOD) by optimizing the geometry of the transport electrode. The new design integrates micro-barriers on the electrodes to generate vortex currents that promote mixing during droplet transport. This design solution requires only two activation signals, minimizing the number of pins required. The mixing performance of the new design was evaluated by analyzing the degree of mixing inside the droplet and quantifying the motion of the internal particles. In addition, the rapid mixing capability of the new platform was demonstrated by successfully mixing the sorbitol solution with the detection solution and detecting the resulting reaction products. The experimental results show that the transfer electrode with a micro-barrier enables rapid mixing of liquids with a six-fold increase in mixing efficiency, making it ideal for the development of EWOD devices.
Collapse
Affiliation(s)
- Shang Gao
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| | - Xichuan Rui
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
- Department of Micro/Nano Electronics State Key Laboratory of Radio Frequency Heterogeneous Integration, Shanghai Jiao Tong University, Shanghai 200433, China
| | - Xiangyu Zeng
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| | - Jia Zhou
- School of Microelectronics, Fudan University, Shanghai 200433, China; (S.G.); (X.R.)
| |
Collapse
|
43
|
Vargas MJT, Nieuwoudt MK, Arul R, Williams DE, Simpson MC. Direct laser writing of hydrophobic and hydrophilic valves in the same material applied to centrifugal microfluidics. RSC Adv 2023; 13:22302-22314. [PMID: 37497087 PMCID: PMC10366570 DOI: 10.1039/d3ra01749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023] Open
Abstract
In this study, we utilize nanosecond and femtosecond direct laser writing for the generation of hydrophobic and hydrophilic microfluidic valves on a centrifugal microfluidic disk made of polycarbonate, without the need for wet-chemistry. Application of a femtosecond (fs) laser at 800 nm resulted in an increased contact angle, from ∼80° to ∼160°, thereby inducing the formation of a hydrophobic surface. In contrast, employing a nanosecond (ns) laser at 248 nm led to the formation of superhydrophilic surfaces. Morphological studies identified the enhancement in the surface roughness for the hydrophobic surfaces and the creation of smooth patterns for the hydrophilic surfaces. Chemical modifications in the laser-ablated samples were confirmed via Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. These spectroscopic examinations revealed an increase of hydrophilic chemical groups on both surfaces, with a more pronounced increase on the nanosecond laser-modified surface. Furthermore, these surfaces were used as a case study for centrifugal microfluidic valves. These modified surfaces demonstrated peculiar pressure responses. Specifically, the hydrophobic valves necessitated a 29% increase in pressure for droplet passage through a microchannel. On the other hand, the superhydrophilic valves exhibited enhanced wettability, decreasing the pressure requirement for fluid flow through the modified area by 39%. However, similarly to the hydrophobic valves, the fluid exiting the hydrophilic valve area required an increased pressure. Overall, our study shows the potential for tailoring valve functionality in microfluidic systems through precise surface modifications using laser technology.
Collapse
Affiliation(s)
- Matheus J T Vargas
- Orbis Diagnostics Ltd 14 West Street, Eden Terrace Auckland 1010 New Zealand
- Photon Factory, University of Auckland 38 Princes St Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland Bldg. 302, 23 Symonds St Auckland 1010 New Zealand
| | - Michel K Nieuwoudt
- Photon Factory, University of Auckland 38 Princes St Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland Bldg. 302, 23 Symonds St Auckland 1010 New Zealand
| | - Rakesh Arul
- Photon Factory, University of Auckland 38 Princes St Auckland 1010 New Zealand
- Cavendish Laboratory, Department of Physics, University of Cambridge JJ Thompson Avenue Cambridge CB3 0HE UK
| | - David E Williams
- Orbis Diagnostics Ltd 14 West Street, Eden Terrace Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland Bldg. 302, 23 Symonds St Auckland 1010 New Zealand
| | - M Cather Simpson
- Orbis Diagnostics Ltd 14 West Street, Eden Terrace Auckland 1010 New Zealand
- Photon Factory, University of Auckland 38 Princes St Auckland 1010 New Zealand
- Department of Physics, University of Auckland 38 Princes Street Auckland 1010 New Zealand
| |
Collapse
|
44
|
Cardoso BD, Castanheira EMS, Lanceros‐Méndez S, Cardoso VF. Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Adv Healthc Mater 2023; 12:e2202936. [PMID: 36898671 PMCID: PMC11468737 DOI: 10.1002/adhm.202202936] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/27/2023] [Indexed: 03/12/2023]
Abstract
The clinical translations of drugs and nanomedicines depend on coherent pharmaceutical research based on biologically accurate screening approaches. Since establishing the 2D in vitro cell culture method, the scientific community has improved cell-based drug screening assays and models. Those advances result in more informative biochemical assays and the development of 3D multicellular models to describe the biological complexity better and enhance the simulation of the in vivo microenvironment. Despite the overall dominance of conventional 2D and 3D cell macroscopic culture methods, they present physicochemical and operational challenges that impair the scale-up of drug screening by not allowing a high parallelization, multidrug combination, and high-throughput screening. Their combination and complementarity with microfluidic platforms enable the development of microfluidics-based cell culture platforms with unequivocal advantages in drug screening and cell therapies. Thus, this review presents an updated and consolidated view of cell culture miniaturization's physical, chemical, and operational considerations in the pharmaceutical research scenario. It clarifies advances in the field using gradient-based microfluidics, droplet-based microfluidics, printed-based microfluidics, digital-based microfluidics, SlipChip, and paper-based microfluidics. Finally, it presents a comparative analysis of the performance of cell-based methods in life research and development to achieve increased precision in the drug screening process.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
| | - Senentxu Lanceros‐Méndez
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Vanessa F. Cardoso
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| |
Collapse
|
45
|
Tang Y, Duan F, Zhou A, Kanitthamniyom P, Luo S, Hu X, Jiang X, Vasoo S, Zhang X, Zhang Y. Image-based real-time feedback control of magnetic digital microfluidics by artificial intelligence-empowered rapid object detector for automated in vitro diagnostics. Bioeng Transl Med 2023; 8:e10428. [PMID: 37476053 PMCID: PMC10354763 DOI: 10.1002/btm2.10428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
In vitro diagnostics (IVD) plays a critical role in healthcare and public health management. Magnetic digital microfluidics (MDM) perform IVD assays by manipulating droplets on an open substrate with magnetic particles. Automated IVD based on MDM could reduce the risk of accidental exposure to contagious pathogens among healthcare workers. However, it remains challenging to create a fully automated IVD platform based on the MDM technology because of a lack of effective feedback control system to ensure the successful execution of various droplet operations required for IVD. In this work, an artificial intelligence (AI)-empowered MDM platform with image-based real-time feedback control is presented. The AI is trained to recognize droplets and magnetic particles, measure their size, and determine their location and relationship in real time; it shows the ability to rectify failed droplet operations based on the feedback information, a function that is unattainable by conventional MDM platforms, thereby ensuring that the entire IVD process is not interrupted due to the failure of liquid handling. We demonstrate fundamental droplet operations, which include droplet transport, particle extraction, droplet merging and droplet mixing, on the MDM platform and show how the AI rectify failed droplet operations by acting upon the feedback information. Protein quantification and antibiotic resistance detection are performed on this AI-empowered MDM platform, and the results obtained agree well with the benchmarks. We envision that this AI-based feedback approach will be widely adopted not only by MDM but also by other types of digital microfluidic platforms to offer precise and error-free droplet operations for a wide range of automated IVD applications.
Collapse
Affiliation(s)
- Yuxuan Tang
- School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Fei Duan
- School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Aiwu Zhou
- Singapore Center for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Pojchanun Kanitthamniyom
- School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Shaobo Luo
- School of MicroelectronicsSouthern University of Science and TechnologyShenzhenChina
| | - Xuyang Hu
- China‐Singapore International Joint Research InstituteGuangzhouChina
| | - Xudong Jiang
- School of Electronic and Electrical EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Shawn Vasoo
- National Center for Infectious DiseaseTan Tock Seng HospitalSingaporeSingapore
| | - Xiaosheng Zhang
- School of Electronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Zhang
- School of Electronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
46
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
47
|
Pinheiro KMP, Guinati BGS, Moreira NS, Coltro WKT. Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:117-138. [PMID: 37068747 DOI: 10.1146/annurev-anchem-091522-024759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.
Collapse
Affiliation(s)
| | | | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Brazil
| |
Collapse
|
48
|
Zeng Y, Khor JW, van Neel TL, Tu WC, Berthier J, Thongpang S, Berthier E, Theberge AB. Miniaturizing chemistry and biology using droplets in open systems. Nat Rev Chem 2023; 7:439-455. [PMID: 37117816 PMCID: PMC10107581 DOI: 10.1038/s41570-023-00483-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/30/2023]
Abstract
Open droplet microfluidic systems manipulate droplets on the picolitre-to-microlitre scale in an open environment. They combine the compartmentalization and control offered by traditional droplet-based microfluidics with the accessibility and ease-of-use of open microfluidics, bringing unique advantages to applications such as combinatorial reactions, droplet analysis and cell culture. Open systems provide direct access to droplets and allow on-demand droplet manipulation within the system without needing pumps or tubes, which makes the systems accessible to biologists without sophisticated setups. Furthermore, these systems can be produced with simple manufacturing and assembly steps that allow for manufacturing at scale and the translation of the method into clinical research. This Review introduces the different types of open droplet microfluidic system, presents the physical concepts leveraged by these systems and highlights key applications.
Collapse
Affiliation(s)
- Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jian Wei Khor
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Wan-Chen Tu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Sanitta Thongpang
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
49
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
50
|
Dimitriadis T, Stendardo L, Tagliaro I, Coclite AM, Antonini C, Maitra T. Capillary-Driven Water Transport by Contrast Wettability-Based Durable Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37235501 DOI: 10.1021/acsami.3c03840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Controlling water transport and management is crucial for continuous and reliable system operation in harsh weather conditions. Passive strategies based on nonwetting surfaces are desirable, but so far, the implementation of superhydrophobic coatings into real-world applications has been limited by durability issues and, in some cases, lack of compliance with environmental regulations. Inspired by surface patterning observed on living organisms, in this study we have developed durable surfaces based on contrast wettability for capillary-driven water transport and management. The surface fabrication process combines a hydrophobic coating with hard-anodized aluminum patterning, using a scalable femtosecond laser microtexturing technique. The concept targets heavy-duty engineering applications; particularly in aggressive weather conditions where corrosion is prevalent and typically the anodic aluminum oxide-based coating is used to protect the surface from corrosion, the concept has been validated on anodic aluminum oxide coated aluminum alloy substrates. Such substrates with contrast wettable characteristics show long-term durability in both natural and lab-based artificial UV and corrosion tests where superhydrophobic coatings tend to degrade.
Collapse
Affiliation(s)
- Theodoros Dimitriadis
- Institute of Solid-State Physics, Graz University of Technology, Graz 8010, Austria
- Department of Engineering, FT Technologies (UK) Ltd., Sunbury-on-Thames TW16 7DX, United Kingdom
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Anna Maria Coclite
- Institute of Solid-State Physics, Graz University of Technology, Graz 8010, Austria
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Tanmoy Maitra
- Department of Engineering, FT Technologies (UK) Ltd., Sunbury-on-Thames TW16 7DX, United Kingdom
| |
Collapse
|