1
|
Zhu L, Chang Y, Li Y, Qiao M, Liu L. Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes. BIOSENSORS 2023; 13:bios13050507. [PMID: 37232868 DOI: 10.3390/bios13050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Molecular immobilization and recognition are two key events for the development of biosensors. The general ways for the immobilization and recognition of biomolecules include covalent coupling reactions and non-covalent interactions of antigen-antibody, aptamer-target, glycan-lectin, avidin-biotin and boronic acid-diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most common commercial ligands for chelating metal ions. The NTA-metal complexes show high and specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein separation and immobilization for diagnostic applications since most of commercialized proteins have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review focused on the development of biosensors with NTA-metal complexes as the binding units, mainly including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spectroscopy, chemiluminescence and so on.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
2
|
Karuppannan SK, Nijhuis CA. A Method to Investigate the Mechanism of Charge Transport Across Bio-Molecular Junctions with Ferritin. Methods Mol Biol 2023; 2671:241-255. [PMID: 37308649 DOI: 10.1007/978-1-0716-3222-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the mechanisms of charge transport (CT) across biomolecular tunnel junctions, it is required to make electrical contacts by a non-invasive method that leaves the biomolecules unaltered. Although different methods to form biomolecular junctions are available, here we describe the EGaIn-method because it allows us to readily form electrical contacts to monolayers of biomolecules in ordinary laboratory settings and to probe CT as a function of voltage, temperature, or magnetic field. This method relies on a non-Newtonian liquid-metal ally of Ga and In with a few nm thin layer of GaOx floating on its surface giving this material non-Newtonian properties allowing it to be shaped in to cone-shaped tips or stabilized in microchannels. These EGaIn structures form stable contacts to monolayers making it possible to investigate CT mechanisms across biomolecules in great detail.
Collapse
Affiliation(s)
- Senthil Kumar Karuppannan
- National Quantum Fables Foundry (NQFF), Institute of Materials Research and Engineering, Singapore, Singapore
| | - Christian A Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
3
|
Differential Proteomics of Helicobacter pylori Isolates from Gastritis, Ulcer, and Cancer Patients: First Study from Northwest Pakistan. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091168. [PMID: 36143845 PMCID: PMC9500814 DOI: 10.3390/medicina58091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Background and Objective: Helicobacter pylori is a human-stomach-dwelling organism that causes many gastric illnesses, including gastritis, ulcer, and gastric cancer. The purpose of the study was to perform differential proteomic analysis on H. pylori isolates from gastritis, ulcer, and gastric cancer patients. Materials and Methods: H. pylori was isolated from antrum and fundus biopsies obtained from patients who visited the Department of Gastroenterology. Using nano-LC-QTOF MS/MS analysis, differentially regulated proteins were identified through proteome profiling of pooled samples of H. pylori isolated from gastritis, ulcer, and gastric cancer patients. Antigenic scores and cellular localization of proteins were determined using additional prediction tools. Results: A total of 14 significantly regulated proteins were identified in H. pylori isolated from patients with either gastritis, ulcer, or gastric cancer. Comparative analysis of groups revealed that in the case of cancer vs. gastritis, six proteins were overexpressed, out of which two proteins, including hydrogenase maturation factor (hypA) and nucleoside diphosphate kinase (ndk) involved in bacterial colonization, were only upregulated in isolates from cancer patients. Similarly, in cancer vs. ulcer, a total of nine proteins were expressed. Sec-independent protein translocase protein (tatB), involved in protein translocation, and pseudaminic acid synthase I (pseI), involved in the synthesis of functional flagella, were upregulated in cancer, while hypA and ndk were downregulated. In ulcer vs. gastritis, eight proteins were expressed. In this group, tatB was overexpressed. A reduction in thioredoxin peroxidase (bacterioferritin co-migratory protein (bcp)) was observed in ulcer vs. gastritis and cancer vs. ulcer. Conclusion: Our study suggested three discrete protein signatures, hypA, tatB, and bcp, with differential expression in gastritis, ulcer, and cancer. Protein expression profiles of H. pylori isolated from patients with these gastric diseases will help to understand the virulence and pathogenesis of H. pylori.
Collapse
|
4
|
Protein engineering for electrochemical biosensors. Curr Opin Biotechnol 2022; 76:102751. [PMID: 35777077 DOI: 10.1016/j.copbio.2022.102751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The development of electrochemical biosensors has gained tremendous attention. Protein engineering has been applied for enhancing properties of native redox enzymes, such as selectivity, sensitivity, and stability required for applicable biosensors. This review highlights recent advances of protein engineering to improve enzymatic catalysis of biosensors, facilitate electron transfer and enzyme immobilization, and construct allosteric protein biosensors. The pros and cons of different protein engineering strategies are briefly discussed, and perspectives are further provided.
Collapse
|
5
|
Kano K. Fundamental insight into redox enzyme-based bioelectrocatalysis. Biosci Biotechnol Biochem 2022; 86:141-156. [PMID: 34755834 DOI: 10.1093/bbb/zbab197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022]
Abstract
Redox enzymes can work as efficient electrocatalysts. The coupling of redox enzymatic reactions with electrode reactions is called enzymatic bioelectrocatalysis, which imparts high reaction specificity to electrode reactions with nonspecific characteristics. The key factors required for bioelectrocatalysis are hydride ion/electron transfer characteristics and low specificity for either substrate in redox enzymes. Several theoretical features of steady-state responses are introduced to understand bioelectrocatalysis and to extend the performance of bioelectrocatalytic systems. Applications of the coupling concept to bioelectrochemical devices are also summarized with emphasis on the achievements recorded in the research group of the author.
Collapse
Affiliation(s)
- Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
6
|
Suni II. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. BIOSENSORS 2021; 11:239. [PMID: 34356710 PMCID: PMC8301891 DOI: 10.3390/bios11070239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Electrochemical biosensors have potential applications for agriculture, food safety, environmental monitoring, sports medicine, biomedicine, and other fields. One of the primary challenges in this field is the immobilization of biomolecular probes atop a solid substrate material with adequate stability, storage lifetime, and reproducibility. This review summarizes the current state of the art for covalent bonding of biomolecules onto solid substrate materials. Early research focused on the use of Au electrodes, with immobilization of biomolecules through ω-functionalized Au-thiol self-assembled monolayers (SAMs), but stability is usually inadequate due to the weak Au-S bond strength. Other noble substrates such as C, Pt, and Si have also been studied. While their nobility has the advantage of ensuring biocompatibility, it also has the disadvantage of making them relatively unreactive towards covalent bond formation. With the exception of Sn-doped In2O3 (indium tin oxide, ITO), most metal oxides are not electrically conductive enough for use within electrochemical biosensors. Recent research has focused on transition metal dichalcogenides (TMDs) such as MoS2 and on electrically conductive polymers such as polyaniline, polypyrrole, and polythiophene. In addition, the deposition of functionalized thin films from aryldiazonium cations has attracted significant attention as a substrate-independent method for biofunctionalization.
Collapse
Affiliation(s)
- Ian Ivar Suni
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA; ; Tel.: +1-618-453-7822
- School of Chemistry and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- School of Mechanical, Aerospace and Materials Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
7
|
Laroussi A, Raouafi N, Mirsky VM. Electrocatalytic Sensor for Hydrogen Peroxide Based on Immobilized Benzoquinone. ELECTROANAL 2021. [DOI: 10.1002/elan.202100113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arwa Laroussi
- University of Tunis El Manar Faculty of Science of Tunis Chemistry Department Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15) campus universitaire de Tunis El Manar 2092 Tunis El Manar Tunisia
- Department of Nanobiotechnology Institute of Biotechnology Brandenburg University of Technology Cottbus-Senftenberg 01968 Senftenberg Germany
| | - Noureddine Raouafi
- University of Tunis El Manar Faculty of Science of Tunis Chemistry Department Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15) campus universitaire de Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Vladimir M. Mirsky
- Department of Nanobiotechnology Institute of Biotechnology Brandenburg University of Technology Cottbus-Senftenberg 01968 Senftenberg Germany
| |
Collapse
|
8
|
Bucur B, Purcarea C, Andreescu S, Vasilescu A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:3038. [PMID: 33926034 PMCID: PMC8123588 DOI: 10.3390/s21093038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Enzymatic biosensors enjoy commercial success and are the subject of continued research efforts to widen their range of practical application. For these biosensors to reach their full potential, their selectivity challenges need to be addressed by comprehensive, solid approaches. This review discusses the status of enzymatic biosensors in achieving accurate and selective measurements via direct biocatalytic and inhibition-based detection, with a focus on electrochemical enzyme biosensors. Examples of practical solutions for tackling the activity and selectivity problems and preventing interferences from co-existing electroactive compounds in the samples are provided such as the use of permselective membranes, sentinel sensors and coupled multi-enzyme systems. The effect of activators, inhibitors or enzymatic substrates are also addressed by coupled enzymatic reactions and multi-sensor arrays combined with data interpretation via chemometrics. In addition to these more traditional approaches, the review discusses some ingenious recent approaches, detailing also on possible solutions involving the use of nanomaterials to ensuring the biosensors' selectivity. Overall, the examples presented illustrate the various tools available when developing enzyme biosensors for new applications and stress the necessity to more comprehensively investigate their selectivity and validate the biosensors versus standard analytical methods.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute for Research and Development in Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Cristina Purcarea
- Institute of Biology, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13676, USA;
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
9
|
Olloqui-Sariego JL, Zakharova GS, Poloznikov AA, Calvente JJ, Hushpulian DM, Gorton L, Andreu R. Influence of tryptophan mutation on the direct electron transfer of immobilized tobacco peroxidase. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Yang F, Zuo X, Fan C, Zhang XE. Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing. Natl Sci Rev 2018. [DOI: 10.1093/nsr/nwx134] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Biosensors are a type of important biodevice that integrate biological recognition elements, such as enzyme, antibody and DNA, and physical or chemical transducers, which have revolutionized clinical diagnosis especially under the context of point-of-care tests. Since the performance of a biosensor depends largely on the bio–solid interface, design and engineering of the interface play a pivotal role in developing quality biosensors. Along this line, a number of strategies have been developed to improve the homogeneity of the interface or the precision in regulating the interactions between biomolecules and the interface. Especially, intense efforts have been devoted to controlling the surface chemistry, orientation of immobilization, molecular conformation and packing density of surface-confined biomolecular probes (proteins and nucleic acids). By finely tuning these surface properties, through either gene manipulation or self-assembly, one may reduce the heterogeneity of self-assembled monolayers, increase the accessibility of target molecules and decrease the binding energy barrier to realize high sensitivity and specificity. In this review, we summarize recent progress in interfacial engineering of biosensors with particular focus on the use of protein and DNA nanostructures. These biomacromolecular nanostructures with atomistic precision lead to highly regulated interfacial assemblies at the nanoscale. We further describe the potential use of the high-performance biosensors for precision diagnostics.
Collapse
Affiliation(s)
- Fan Yang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaolei Zuo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, CAS Excellence Center for Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Amjad M, Sumrra SH, Akram MS, Chohan ZH. Metal-based ethanolamine-derived compounds: a note on their synthesis, characterization and bioactivity. J Enzyme Inhib Med Chem 2016; 31:88-97. [DOI: 10.1080/14756366.2016.1220375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Muhammad Amjad
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan,
| | - Sajjad H. Sumrra
- Department of Chemistry, Institute of Natural Sciences, University of Gujrat, Gujrat, Pakistan,
| | | | - Zahid H. Chohan
- Department of Chemistry, University of Sargodha, Bhakkar Campus, Pakistan
| |
Collapse
|